Antworten:
Siehe unten
Erläuterung:
Ich bin mir nicht zu 100% sicher, aber das wäre meine Antwort.
Die Definition einer geraden Funktion ist
Deshalb,
Antworten:
Unten finden Sie eine detaillierte Lösung
Erläuterung:
# f # heißt sogar: für jeden# x # #im# # RR # ,# -x # #im# # RR #
# f # kontinuierlich um# x_0 = a # #<=># #lim_ (x-> a) f (x) = f (a) #
einstellen
Der Graph von h (x) wird angezeigt. Das Diagramm scheint kontinuierlich zu sein, wo sich die Definition ändert. Zeigen Sie, dass h tatsächlich kontinuierlich ist, indem Sie die linken und rechten Grenzen finden und zeigen, dass die Definition der Kontinuität erfüllt ist.
Bitte beachten Sie die Erklärung. Um zu zeigen, dass h stetig ist, müssen wir seine Kontinuität bei x = 3 überprüfen. Wir wissen, dass h. bei x = 3, wenn und nur dann, wenn lim_ (x bis 3-) h (x) = h (3) = lim_ (x bis 3+) h (x) ............ ................... (ast). Als x bis 3, x lt 3:. h (x) = - x ^ 2 + 4x + 1. :. lim_ (x bis 3-) h (x) = lim_ (x bis 3 -) - x ^ 2 + 4x + 1 = - (3) ^ 2 + 4 (3) +1, rArr lim_ (x bis 3-) h (x) = 4 ............................................ .......... (ast ^ 1). In ähnlicher Weise ist lim_ (x zu 3+) h (x) = lim_ (x zu 3+) 4 (0,6) ^ (x-3) = 4 (0,6) ^ 0. rArr lim_
Sei f (x) = x-1. 1) Stellen Sie sicher, dass f (x) weder gerade noch ungerade ist. 2) Kann f (x) als Summe einer geraden und einer ungeraden Funktion geschrieben werden? a) Wenn ja, zeigen Sie eine Lösung. Gibt es mehr Lösungen? b) Falls nicht, beweisen Sie, dass dies unmöglich ist.
Sei f (x) = | x -1 |. Wenn f gerade wäre, dann wäre f (-x) für alle x gleich f (x). Wenn f ungerade wäre, dann wäre f (-x) für alle x -f (x). Beachten Sie, dass für x = 1 f (1) = | 0 | = 0 f (-1) = | -2 | = 2 Da 0 nicht gleich 2 oder -2 ist, ist f weder gerade noch ungerade. Könnte f als g (x) + h (x) geschrieben werden, wobei g gerade ist und h ungerade ist? Wenn das wahr wäre, dann g (x) + h (x) = | x - 1 |. Rufen Sie diese Anweisung auf 1. Ersetzen Sie x durch -x. g (-x) + h (-x) = | -x - 1 | Da g gerade ist und h ungerade ist, haben wir: g (x) - h (x) = | -x - 1 | Nennen Sie
Sei f eine Funktion damit (unten). Welches muss wahr sein? I. f ist kontinuierlich bei x = 2 II. f ist bei x = 2 III unterscheidbar. Die Ableitung von f ist kontinuierlich bei x = 2 (A) I (B) II (C) I und II (D) I & III (E) II & III
(C) Zu beachten, dass eine Funktion f an einem Punkt x_0 differenzierbar ist, wenn lim_ (h-> 0) (f (x_ + h) -f (x_0)) / h = L die gegebene Information effektiv ist, dass f bei 2 differenzierbar ist und das ist f '(2) = 5. Betrachten wir nun die Aussagen: I: True Unterscheidbarkeit einer Funktion an einem Punkt impliziert ihre Kontinuität an diesem Punkt. II: wahr Die angegebenen Informationen entsprechen der Definition der Unterscheidbarkeit bei x = 2. III: Falsch Die Ableitung einer Funktion ist nicht notwendigerweise stetig, ein klassisches Beispiel ist g (x) = {(x ^ 2sin (1 / x), wenn x! = 0), (0 wenn x = 0)