Antworten:
Die Länge der Hypotenuse beträgt
Erläuterung:
Um die Hypotenuse eines rechtwinkligen Dreiecks zu finden, können wir den Satz des Pythagoras verwenden.
Die Hypotenuse eines rechtwinkligen Dreiecks ist 6,1 Einheiten lang. Das längere Bein ist 4,9 Einheiten länger als das kürzere Bein. Wie finden Sie die Längen der Seiten des Dreiecks?
Die Seiten sind Farbe (blau) (1,1 cm und Farbe (grün) (6 cm) Die Hypotenuse: Farbe (blau) (AB) = 6,1 cm (vorausgesetzt, die Länge wird in cm angegeben) Lassen Sie das kürzere Bein: Farbe (blau) (BC) = x cm Sei das längere Bein: Farbe (blau) (CA) = (x +4.9) cm Gemäß Satz von Pythagoras: (AB) ^ 2 = (BC) ^ 2 + (CA) ^ 2 (6.1) ^ 2 = (x) ^ 2 + (x + 4,9) ^ 2 37,21 = (x) ^ 2 + Farbe (grün) ((x + 4,9) ^ 2) Anwenden der folgenden Eigenschaft auf Farbe (grün) ((x + 4,9) ^ 2 : Farbe (blau) ((a + b) ^ 2 = a ^ 2 + 2ab + b ^ 2 37,21 = (x) ^ 2 + [Farbe (grün) (x ^ 2 + 2 x x x x 4,9 + 24,01) ] 3
Die Beine des rechtwinkligen Dreiecks ABC haben die Längen 3 und 4. Wie groß ist der Umfang eines rechtwinkligen Dreiecks, wobei jede Seite doppelt so lang ist wie die entsprechende Seite im Dreieck ABC?
2 (3) +2 (4) +2 (5) = 24 Dreieck ABC ist ein 3-4-5-Dreieck - wir können dies anhand des Satzes von Pythagorean erkennen: a ^ 2 + b ^ 2 = c ^ 2 3 ^ 2 + 4 ^ 2 = 5 ^ 2 9 + 16 = 25 25 = 25 Farbe (Weiß) (00) Farbe (Grün) Wurzel Wir wollen nun den Umfang eines Dreiecks ermitteln, das doppelt so groß ist wie der von ABC: 2 ( 3) +2 (4) +2 (5) = 6 + 8 + 10 = 24
Das längere Bein eines rechtwinkligen Dreiecks ist 3 Zoll mehr als 3 mal so lang wie das kürzere Bein. Die Fläche des Dreiecks beträgt 84 Quadratzoll. Wie finden Sie den Umfang eines rechtwinkligen Dreiecks?
P = 56 Quadratzoll. Siehe nachstehende Abbildung zum besseren Verständnis. c = 3b + 3 (bc) / 2 = 84 (b. (3b + 3)) / 2 = 84 3b ^ 2 + 3b = 84xx2 3b ^ 2 + 3b-168 = 0 Lösen der quadratischen Gleichung: b_1 = 7 b_2 = -8 (unmöglich) Also ist b = 7 c = 3xx7 + 3 = 24 a ^ 2 = 7 ^ 2 + 24 ^ 2 a ^ 2 = 625 a = sqrt (625) = 25 P = 7 + 24 + 25 = 56 Quadratzoll