Antworten:
Zuerst benutzt man die Produktionsregel um zu bekommen
Verwenden Sie dann die Linearität der Ableitung und Funktionsableitungsdefinitionen, um zu erhalten
Erläuterung:
Produktregel beinhaltet die Ableitung von Funktionen, die ein Vielfaches von zwei (oder mehr) Funktionen in der Form sind
Anwenden auf unsere Funktion,
Wir haben
Zusätzlich müssen wir die Linearität der Ableitung verwenden
Anwenden dieses haben wir
Wir müssen die einzelnen Ableitungen dieser Funktionen machen, die wir verwenden
Jetzt haben wir
An diesem Punkt haben wir nur ein bisschen gegessen
Wie unterscheidet man y = (- 2x ^ 4 + 5x ^ 2 + 4) (- 3x ^ 2 + 2) anhand der Produktregel?
Siehe die Antwort unten:
Wie unterscheidet man f (x) = x ^ 3sqrt (x-2) sinx anhand der Produktregel?
F '(x) = 3x ^ 2sqrt (x-2) sinx + (x ^ 3sinx) / (2sqrt (x-2)) + x ^ 3sqrt (x-2) cosx Wenn f (x) = g (x) h (x) j (x), dann ist f '(x) = g' (x) h (x) j (x) + g (x) h '(x) j (x) + g (x) h (x j '(x) g (x) = x ^ 3 g' (x) = 3x ^ 2 h (x) = sqrt (x-2) = (x-2) ^ (1/2) h '(x ) = 1/2 * (x-2) ^ (- 1/2) * d / dx [x-2] Farbe (weiß) (h '(x)) = (x-2) ^ (- 1/2) ) / 2 * 1 Farbe (weiß) (h '(x)) = (x-2) ^ (- 1/2) / 2 Farbe (weiß) (h' (x)) = 1 / (2sqrt (x-) 2)) j (x) = sinx j '(x) = cosx f' (x) = 3x ^ 2sqrt (x-2) sinx + x ^ 3 1 / (2sqrt (x-2)) sinx + x ^ 3sqrt (x-2) cosx f '(x)
Wie unterscheidet man f (x) = (x ^ 3-3x) (2x ^ 2 + 3x + 5) anhand der Produktregel?
Die Antwort lautet (3x ^ 2-3) * (2x ^ 2 + 3x + 5) + (x ^ 3 - 3x) * (4x + 3), was die Vereinfachung auf 10x ^ 4 + 12x ^ 3-3x ^ 2- vereinfacht. 18x-15. Gemäß der Produktregel gilt (f g) '= f' g + f g 'Dies bedeutet nur, dass Sie, wenn Sie ein Produkt differenzieren, eine Ableitung vom ersten machen, die zweite allein lassen, plus die zweite vom zweiten der erste alleine Der erste wäre also (x ^ 3 - 3x) und der zweite wäre (2x ^ 2 + 3x + 5). Okay, jetzt ist die Ableitung des ersten 3x ^ 2-3 mal die Sekunde ist (3x ^ 2-3) * (2x ^ 2 + 3x + 5). Die Ableitung der Sekunde ist (2 * 2x + 3 + 0) ode