Antworten:
Eine Gleichung zur Darstellung des Umfangs in Bezug auf seine Breite lautet:
Erläuterung:
Lass die Breite des Rechtecks sein
Lass die Länge des Rechtecks sein
Wenn die Länge (
Die Formel für den Umfang eines Rechtecks lautet:
Ersetzen
Ersetzen
Nachtrag
Die Länge eines Rechtecks beträgt 3,5 Zoll mehr als seine Breite. Der Umfang des Rechtecks beträgt 31 Zoll. Wie finden Sie die Länge und Breite des Rechtecks?
Länge = 9,5 ", Breite = 6" Beginnen Sie mit der Umfangsgleichung: P = 2l + 2w. Dann geben Sie an, welche Informationen wir kennen. Der Umfang beträgt 31 "und die Länge entspricht der Breite + 3,5". Dazu gilt: 31 = 2 (w + 3,5) + 2w, weil l = w + 3,5. Dann lösen wir nach w, indem wir alles durch 2 teilen. Wir bleiben dann bei 15.5 = w + 3.5 + w. Dann subtrahieren Sie 3,5 und kombinieren Sie die w, um zu erhalten: 12 = 2w. Schließlich dividiere noch mal durch 2, um w zu finden, und wir erhalten 6 = w. Dies sagt uns, dass die Breite 6 Zoll beträgt, die Hälfte des Problems.
Die Länge eines Rechtecks beträgt das Dreifache seiner Breite. Wenn die Länge um 2 Zoll und die Breite um 1 Zoll vergrößert würde, würde der neue Umfang 62 Zoll betragen. Was ist die Breite und Länge des Rechtecks?
Länge ist 21 und Breite ist 7. Ich benutze l für Länge und w für Breite. Zuerst wird angegeben, dass l = 3w gilt. Neue Länge und Breite ist l + 2 bzw. w + 1. Neuer Umfang ist 62. Also, l + 2 + l + 2 + w + 1 + w + 1 = 62 oder, 2l + 2w = 56 l + w = 28 Nun haben wir zwei Beziehungen zwischen l und w. Ersetzen Sie den ersten Wert von l in der zweiten Gleichung. Wir erhalten 3w + w = 28 4w = 28 w = 7 Setzen Sie diesen Wert von w in eine der Gleichungen: l = 3 * 7 l = 21 Also Länge ist 21 und Breite ist 7
Die Länge eines Rechtecks beträgt 4 weniger als die doppelte Breite. Die Fläche des Rechtecks beträgt 70 Quadratfuß. Finden Sie die Breite w des Rechtecks algebraisch. Erklären Sie, warum eine der Lösungen für w nicht praktikabel ist. ?
Eine Antwort ist negativ und die Länge kann niemals 0 oder darunter sein. Sei w = "Breite" Sei 2w - 4 = "Länge" "Fläche" = ("Länge") ("Breite") (2w - 4) (w) = 70 2w ^ 2 - 4w = 70 w ^ 2 - 2w = 35 w ^ 2 - 2w - 35 = 0 (w-7) (w + 5) = 0 Also ist w = 7 oder w = -5 w = -5 nicht möglich, da Messungen über Null liegen müssen.