Antworten:
Der Einheitsvektor ist
Erläuterung:
Erstens brauchen wir den Vektor senkrecht zu zwei anderen Vectros:
Dafür machen wir das Kreuzprodukt der Vektoren:
Lassen
Das Kreuzprodukt
So
Wir können überprüfen, ob sie senkrecht sind, indem Sie das Punktprodukt ausführen.
Der Einheitsvektor
Der Modul von
Der Einheitsvektor ist also
Was ist der Einheitsvektor, der orthogonal zu der Ebene ist, die (i + j - k) und (i - j + k) enthält?
Wir wissen, dass wenn vec C = vec A × vec B ist, dann ist vec C sowohl senkrecht zu vec A als auch zu vec B. Was wir also brauchen, ist das Kreuzprodukt der gegebenen zwei Vektoren zu finden. Also, (hati + hatj-hatk) × (hati-hatj + hatk) = - hatk-hatj-hatk + hati-hatj-i = -2 (hatk + hatj) Der Einheitsvektor ist also (-2 (hatk +) hatj)) / (sqrt (2 ^ 2 + 2 ^ 2)) = - (hatk + hatj) / sqrt (2)
Was ist der Einheitsvektor, der orthogonal zu der Ebene ist, die <0, 4, 4> und <1, 1, 1> enthält?
Die Antwort ist = 〈0,1 / sqrt2, -1 / sqrt2〉 Der Vektor, der senkrecht zu 2 anderen Vektoren steht, ist durch das Kreuzprodukt gegeben. 〈0,4,4〉 x 1,1,1〉 = | (hati, hatj, hatk), (0,4,4), (1,1,1) | = hati (0) -hatj (-4) + hatk (-4) = 〈0,4, -4> Überprüfung durch Ausführen der Punktprodukte <0,4,4>. <0,4, -4> = 0 + 16-16 = 0 <1,1,1>. <0,4, -4> = 0 + 4-4 = 0 Der Modul von <0,4, -4> ist = <0,4>. 4〉 = sqrt (0 + 16 + 16) = sqrt32 = 4sqrt2 Der Einheitsvektor wird durch Division des Vektors durch den Modul = 1 / (4sqrt2)) 0,4, -4〉 = 〈0,1 / sqrt2 erhalten. -1 / sqrt2〉
Was ist der Einheitsvektor, der orthogonal zu der Ebene ist, die (20j + 31k) und (32i-38j-12k) enthält?
Der Einheitsvektor ist = 1 / 1507.8 <938.992, -640> Der Vektor, der zu 2 Vectros in einer Ebene orthogonal ist, wird mit der Determinante | berechnet (veci, vecj, veck), (d, e, f), (g, h, i) | Dabei sind 〈d, e, f〉 und 〈g, h, i〉 die 2 Vektoren. Hier haben wir veca = 〈0,20,31〉 und vecb = 〈32, -38, -12〉 (veci, vecj, veck), (0,20,31), (32, -38, -12) | = veci | (20,31), (-38, -12) | -vecj | (0,31), (32, -12) | + veck | (0,20), (32, -38) | = veci (20 * -12 + 38 * 31) -vecj (0 * -12-31 * 32) + veck (0 * -38-32 * 20) = 38 938.992, -640〉 = vecc Überprüfung durch Ausführen von 2 Punkten Produkte <938 992, -64