Antworten:
Transport, Verpackung, Zytoskelett, Energiefreigabe usw.
Erläuterung:
Golgy-Körper helfen beim Verpacken von Materialien für den inter- und intrazellulären Transport. In Hosen werden Materialien der Zellplatte zum Äquator transportiert, während sie bei Tieren in Leberzellen helfen.
Die endoplasmatischen Retikula sind die Standorte der Proteinsynthese und ergeben das Zytoskelett. Es verleiht den Zellen Steifheit.
Die Mitochondrien sind 'Krafthaus der Zellen'. In den Mitochodrien werden die Nahrungsmaterialien oxidiert und Energie für die Vitalfunktionen freigesetzt. Danke dir.
Die Funktion für die Materialkosten für ein Hemd ist f (x) = 5 / 6x + 5, wobei x die Anzahl der Hemden ist. Die Funktion für den Verkaufspreis dieser Hemden ist g (f (x)), wobei g (x) = 5x + 6 ist. Wie finden Sie den Verkaufspreis von 18 Hemden?
Die Antwort ist g (f (18)) = 106 Wenn f (x) = 5 / 6x + 5 und g (x) = 5x + 6 Dann g (f (x)) = g (5 / 6x + 5) = 5 (5 / 6x + 5) +6 Vereinfachung von g (f (x)) = 25 / 6x + 25 + 6 = 25 / 6x + 31 Wenn x = 18 Dann ist g (f (18)) = 25/6 * 18 + 31 = 25 * 3 + 31 = 75 + 31 = 106
Der Graph der Funktion f (x) = (x + 2) (x + 6) ist unten gezeigt. Welche Aussage zur Funktion trifft zu? Die Funktion ist für alle reellen Werte von x mit x> -4 positiv. Die Funktion ist für alle reellen Werte von x negativ, wobei –6 <x <–2 ist.
Die Funktion ist für alle reellen Werte von x negativ, wobei –6 <x <–2 ist.
Wenn die Funktion f (x) eine Domäne von -2 <= x <= 8 und einen Bereich von -4 <= y <= 6 hat und die Funktion g (x) durch die Formel g (x) = 5f ( 2x)) was sind dann die Domäne und der Bereich von g?
Unten. Verwenden Sie grundlegende Funktionsumwandlungen, um die neue Domäne und den neuen Bereich zu finden. 5f (x) bedeutet, dass die Funktion um einen Faktor fünf vertikal gedehnt wird. Daher umfasst der neue Bereich ein Intervall, das fünfmal größer ist als das ursprüngliche. Im Falle von f (2x) wird die Funktion um einen Faktor von einer halben Hälfte gedehnt. Daher werden die Extremitäten der Domäne halbiert. Et voilà!