Antworten:
Erläuterung:
ich nehme an
Lassen
Wie
weil
Ähnlich,
Da die linken und rechten seitlichen Grenzen nicht gleich sind,
Wie
Daher ist der Mindestwert von
Dies ist die Untergrenze des Bereichs von
Es ist zwar nicht richtig, das zu sagen
Wie
# = lim_ (x -> oo) e ^ x / (x + delta + 1) #
Lassen
# = lim_ (u-> oo) e ^ (u-delta-1) / u = lim_ (u-> oo) e ^ u / u * 1 / e ^ (delta + 1) #
Daher der Bereich von
Das Intervall ist links offen, weil
Die Summe zweier aufeinanderfolgender Zahlen ist 77. Die Differenz zwischen der Hälfte der kleineren und einem Drittel der größeren Zahl ist 6. Wenn x die kleinere Zahl ist und y die größere Zahl ist, stellen die beiden Gleichungen die Summe und die Differenz dar die Zahlen?
X + y = 77 1 / 2x-1 / 3y = 6 Wenn Sie die Zahlen wissen wollen, lesen Sie weiter: x = 38 y = 39
Was ist eine reelle Zahl, eine ganze Zahl, eine ganze Zahl, eine rationale Zahl und eine irrationale Zahl?
Erklärung unten Rational Zahlen gibt es in drei verschiedenen Formen. ganze Zahlen, Brüche und terminierende oder wiederkehrende Dezimalzahlen wie 1/3. Irrationale Zahlen sind ziemlich "unordentlich". Sie können nicht als Brüche geschrieben werden, sie sind niemals endende Dezimalzahlen. Ein Beispiel dafür ist der Wert von π. Eine ganze Zahl kann als ganze Zahl bezeichnet werden und ist entweder eine positive oder negative Zahl oder Null. Ein Beispiel hierfür ist 0, 1 und -365.
Ist sqrt21 eine reelle Zahl, eine rationale Zahl, eine ganze Zahl, eine ganze Zahl, eine irrationale Zahl?
Es ist eine irrationale Zahl und daher real. Lassen Sie uns zuerst beweisen, dass sqrt (21) eine reelle Zahl ist, tatsächlich ist die Quadratwurzel aller positiven reellen Zahlen reell. Wenn x eine reelle Zahl ist, definieren wir für die positiven Zahlen sqrt (x) = "sup" {yinRR: y ^ 2 <= x}. Das bedeutet, dass wir alle reellen Zahlen y so betrachten, dass y ^ 2 <= x ist, und die kleinste reelle Zahl nehmen, die größer als alle y ist, das sogenannte Supremum. Bei negativen Zahlen gibt es diese y nicht, da bei allen reellen Zahlen das Quadrat dieser Zahl eine positive Zahl ergibt und alle