Antworten:
Interaktives Diagramm
Erläuterung:
Das erste, was wir tun müssen, ist zu berechnen
Lass uns diesen Begriff nach Begriff tun. Für die
Für das 2. Semester müssen wir eine Produktregel verwenden. So:
Sie fragen sich vielleicht, warum wir für diesen Teil keine Kettenregel verwendet haben, da wir eine
Jetzt setzen wir alles zusammen:
Achte auf deine Schilder.
Nun müssen wir die Neigung der Linie ermitteln, die tangiert zu ist
Was wir jedoch wollen, ist nicht die Tangente an f (x), sondern die Linie normal dazu Um dies zu erhalten, nehmen wir einfach den negativen Kehrwert der Steigung darüber.
Jetzt passen wir einfach alles in die Form der Punktneigung:
#y = m (x-x_0) + y_0
Sehen Sie sich dieses interaktive Diagramm an, um zu sehen, wie das aussieht!
Hoffe das hat geholfen:)
Der Graph der Linie l in der xy-Ebene verläuft durch die Punkte (2,5) und (4,11). Der Graph der Linie m hat eine Steigung von -2 und einen x-Achsenabschnitt von 2. Wenn der Punkt (x, y) der Schnittpunkt der Linien l und m ist, wie lautet dann der Wert von y?
Y = 2 Schritt 1: Bestimmen Sie die Gleichung der Linie l Wir haben die Steigungsformel m = (y_2 - y_1) / (x_2 - x_1) = (11-5) / (4-2) = 3 Jetzt nach Punkt-Steigungsform Die Gleichung lautet y - y_1 = m (x - x_1) y - 11 = 3 (x - 4) y = 3x - 12 + 11 y = 3x - 1 Schritt 2: Bestimmen Sie die Gleichung der Linie m. Der x - Achsenabschnitt wird immer angezeigt habe y = 0. Daher ist der angegebene Punkt (2, 0). Mit der Steigung haben wir die folgende Gleichung. y - y_1 = m (x - x_1) y - 0 = -2 (x - 2) y = -2x + 4 Schritt 3: Schreiben und lösen eines Gleichungssystems Wir möchten die Lösung des Systems {(y =) finden
Linie A und Linie B sind parallel. Die Steigung der Linie A beträgt -2. Was ist der Wert von x, wenn die Steigung der Linie B 3x + 3 ist?
X = -5 / 3 Sei m_A und m_B die Gradienten der Linien A und B, wenn A und B parallel sind, dann ist m_A = m_B Wir wissen also, dass -2 = 3x + 3 ist. Wir müssen uns neu anordnen, um x zu finden. 2-3 = 3x + 3-3 -5 = 3x + 0 (3x) / 3 = x = -5 / 3 Beweis: 3 (-5/3) + 3 = -5 + 3 = -2 = m_A
Schreiben Sie die Punktneigungsform der Gleichung mit der angegebenen Steigung, die durch den angegebenen Punkt verläuft. A.) die Linie mit der Steigung -4, die durch (5,4) verläuft. und auch B.) die Linie mit der Steigung 2, die durch (-1, -2) verläuft. bitte helfen, das verwirrend?
Y-4 = -4 (x-5) "und" y + 2 = 2 (x + 1)> "die Gleichung einer Linie in" Farbe (blau) "Punktneigungsform" ist. • color (weiß) (x) y-y_1 = m (x-x_1) "wobei m die Steigung ist und" (x_1, y_1) "ein Punkt auf der Linie" (A) "bei" m = -4 "und "(x_1, y_1) = (5,4)" Ersetzen dieser Werte in die Gleichung ergibt "y-4 = -4 (x-5) larrcolor (blau)" in Punktneigungsform "(B)" gegeben "m" = 2 "und" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) Larrcolor (blau) " in Punktneigungsform &quo