
Antworten:
Erläuterung:
# "F (x) neu anordnen, um x zum Betreff zu machen" #
# y = f (x) = 2 / (x + 3) - (4 (x + 3)) / (x + 3) #
# rArry = (2-4x-12) / (x + 3) = (- 4x-10) / (x + 3) #
#Farbe (blau) "Kreuzmultiplikation" #
# rArryx + 3y = -4x-10 #
# rArryx + 4x = -10-3y #
#rArrx (y + 4) = - 10-3y #
#rArrx = (- 10-3y) / (y + 4) # Der Nenner kann nicht Null sein, da dies die Funktion bewirken würde
#Farbe (blau) "undefiniert". # Durch Gleichsetzen des Nenners mit Null und Lösen erhält man den Wert, den y nicht sein kann.
# "lösen" y + 4 = 0rArry = -4larrcolor (rot) "ausgeschlossener Wert" #
# "range" y inRR, y! = - 4 #
Der Graph der Funktion f (x) = (x + 2) (x + 6) ist unten gezeigt. Welche Aussage zur Funktion trifft zu? Die Funktion ist für alle reellen Werte von x mit x> -4 positiv. Die Funktion ist für alle reellen Werte von x negativ, wobei –6 <x <–2 ist.

Die Funktion ist für alle reellen Werte von x negativ, wobei –6 <x <–2 ist.
Was sind der Scheitelpunkt, die Symmetrieachse, der Maximal- oder Minimalwert, der Bereich und der Bereich der Funktion y = x ^ (2) -2x-15?

Koordinate des Scheitelpunkts: x = -b / 2a = 2/2 = 1 y = f (1) = -16 Symmetrieachse: x = 1 Minimaler Wert von y: -16 Domäne von x: -Unendlichkeit bis + Unendlichkeit Bereich: - 16 bis + unendlich.
Welches sind die Eigenschaften des Graphen der Funktion f (x) = (x + 1) ^ 2 + 2? Zutreffendes bitte ankreuzen. Die Domain besteht aus reellen Zahlen. Der Bereich ist alle reellen Zahlen größer oder gleich 1. Der y-Achsenabschnitt ist 3. Der Graph der Funktion ist 1 Einheit höher und

Erster und dritter sind wahr, zweiter ist falsch, vierter ist unvollendet. - Die Domain besteht in der Tat aus reellen Zahlen. Sie können diese Funktion als x ^ 2 + 2x + 3 umschreiben, was ein Polynom ist, und daher die Domäne mathbb {R} hat. Der Bereich ist nicht alle reelle Zahl größer oder gleich 1, da das Minimum 2 ist Tatsache. (x + 1) ^ 2 ist eine horizontale Translation (eine Einheit links) der "strandard" -Parabel x ^ 2, die den Bereich [0, infty] hat. Wenn Sie 2 hinzufügen, verschieben Sie den Graphen vertikal um zwei Einheiten, sodass der Bereich [2, infty) ist. Um den y-Achsena