Wenn wir die drei Seiten als nennen
Verwenden der Eigenschaft der Proportionen (dh vor der Verbindung und dann der Umkehrung von Begriffen):
oder:
oder:
Die Länge jeder Seite eines gleichseitigen Dreiecks wird um 5 Zoll vergrößert, so dass der Umfang jetzt 60 Zoll beträgt. Wie schreibt und löst man eine Gleichung, um die ursprüngliche Länge jeder Seite des gleichseitigen Dreiecks zu ermitteln?
Ich habe gefunden: 15 "in" Lassen Sie uns die ursprünglichen Längen x nennen: Eine Erhöhung von 5 "in" ergibt: (x + 5) + (x + 5) + (x + 5) = 60 3 (x + 5) = 60 Neuanordnung: x + 5 = 60/3 x + 5 = 20 x = 20-5 x = 15 "in"
Der Umfang eines Dreiecks beträgt 24 Zoll. Die längste Seite von 4 Zoll ist länger als die kürzeste Seite, und die kürzeste Seite ist drei Viertel der Länge der mittleren Seite. Wie finden Sie die Länge jeder Seite des Dreiecks?
Nun, dieses Problem ist einfach unmöglich. Wenn die längste Seite 4 Zoll ist, kann der Umfang eines Dreiecks nicht 24 Zoll betragen. Sie sagen, dass 4 + (etwas weniger als 4) + (etwas weniger als 4) = 24 ist, was unmöglich ist.
Der Umfang eines Dreiecks beträgt 29 mm. Die Länge der ersten Seite ist doppelt so lang wie die zweite Seite. Die Länge der dritten Seite ist 5 länger als die Länge der zweiten Seite. Wie finden Sie die Seitenlängen des Dreiecks?
S_1 = 12 s_2 = 6 s_3 = 11 Der Umfang eines Dreiecks ist die Summe der Längen aller seiner Seiten. In diesem Fall ist der Umfang 29 mm. Also für diesen Fall: s_1 + s_2 + s_3 = 29 Wenn wir also nach der Länge der Seiten suchen, übersetzen wir Aussagen in der gegebenen Form in eine Gleichungsform. "Die Länge der 1. Seite ist doppelt so lang wie die 2. Seite." Um dies zu lösen, weisen wir entweder s_1 oder s_2 eine Zufallsvariable zu. In diesem Beispiel würde x die Länge der zweiten Seite sein, um Brüche in meiner Gleichung zu vermeiden. also wissen wir das: s_1 = 2s_2 abe