Antworten:
Bitte wende dich an die Erläuterung.
Erläuterung:
Wir wissen das,
Vermieten
Beachten Sie, dass,
Antworten:
Siehe unten.
Erläuterung:
Es ist bekannt, dass die Gleichung bx ^ 2- (a-3b) x + b = 0 eine reelle Wurzel hat. Beweisen Sie, dass die Gleichung x ^ 2 + (a-b) x + (ab-b ^ 2 + 1) = 0 keine reellen Wurzeln hat.
Siehe unten. Die Wurzeln für bx ^ 2- (a-3b) x + b = 0 sind x = (a - 3 b pmsqrt [a ^ 2 - 6 ab + 5 b ^ 2]) / (2 b) Die Wurzeln fallen zusammen und real, wenn a ^ 2 - 6 ab + 5 b ^ 2 = (a - 5 b) (a - b) = 0 oder a = b oder a = 5b Nun lösen wir x ^ 2 + (ab) x + (ab-b) ^ 2 + 1) = 0 wir haben x = 1/2 (-a + b pm sqrt [a ^ 2 - 6 ab + 5 b ^ 2-4]) Die Bedingung für komplexe Wurzeln ist a ^ 2 - 6 ab + Wenn wir nun a = b oder a = 5b machen, haben wir a ^ 2 - 6 ab + 5 b ^ 2-4 = -4 <0. Fazit: wenn bx ^ 2- (a-3b) x + b = 0 hat übereinstimmende reelle Wurzeln, dann haben x ^ 2 + (ab) x + (ab-b ^ 2 + 1) = 0 komplexe W
Beweisen Sie, dass (1 + Log_5 8 + Log_5 2) / log_5 6400 = 0,5. Beachten Sie, dass die Basisnummer jedes Protokolls 5 und nicht 10 ist. Ich bekomme kontinuierlich 1/80, kann jemand bitte helfen?
1/2 6400 = 25 * 256 = 5 ^ 2 * 2 ^ 8 => log (6400) = log (5 ^ 2) + log (2 ^ 8) = 2 + 8 log (2) log (8) = log (2 ^ 3) = 3 log (2) => (1 + log (8) + log (2)) / log (6400) = (1 + 4 log (2)) / (2 + 8 log (2)) = 1/2
Sei f (x) = x-1. 1) Stellen Sie sicher, dass f (x) weder gerade noch ungerade ist. 2) Kann f (x) als Summe einer geraden und einer ungeraden Funktion geschrieben werden? a) Wenn ja, zeigen Sie eine Lösung. Gibt es mehr Lösungen? b) Falls nicht, beweisen Sie, dass dies unmöglich ist.
Sei f (x) = | x -1 |. Wenn f gerade wäre, dann wäre f (-x) für alle x gleich f (x). Wenn f ungerade wäre, dann wäre f (-x) für alle x -f (x). Beachten Sie, dass für x = 1 f (1) = | 0 | = 0 f (-1) = | -2 | = 2 Da 0 nicht gleich 2 oder -2 ist, ist f weder gerade noch ungerade. Könnte f als g (x) + h (x) geschrieben werden, wobei g gerade ist und h ungerade ist? Wenn das wahr wäre, dann g (x) + h (x) = | x - 1 |. Rufen Sie diese Anweisung auf 1. Ersetzen Sie x durch -x. g (-x) + h (-x) = | -x - 1 | Da g gerade ist und h ungerade ist, haben wir: g (x) - h (x) = | -x - 1 | Nennen Sie