Antworten:
Erläuterung:
Ich habe eine Theorie, alle diese Fragen sind hier, also gibt es für Neulinge etwas zu tun. Ich werde den allgemeinen Fall hier machen und sehen, was passiert.
Wir übersetzen die Ebene so, dass der Erweiterungspunkt P dem Ursprung entspricht. Dann skaliert die Dilatation die Koordinaten um einen Faktor von
Das ist die parametrische Gleichung für eine Linie zwischen P und A mit
Das Bild von
Ebenso das Bild von
Die neue Länge ist
Die Endpunkte des Liniensegments PQ sind A (1,3) und Q (7, 7). Was ist der Mittelpunkt des Liniensegments PQ?
Die Koordinatenänderung von einem Ende zum Mittelpunkt ist die Hälfte der Koordinatenänderung von einem Ende zum anderen. Um von P nach Q zu gehen, nehmen die x-Koordinate um 6 und die y-Koordinate um 4 zu. Wenn Sie von P zum Mittelpunkt gehen, wird die x-Koordinate um 3 und die y-Koordinate um 2 zunehmen. das ist der Punkt (4, 5)
Das PERIMETER des gleichschenkligen Trapezes ABCD beträgt 80 cm. Die Länge der Linie AB ist viermal größer als die Länge einer CD-Linie, die 2/5 der Länge der Linie BC (oder der Linien, die in der Länge gleich sind) beträgt. Was ist die Fläche des Trapezes?
Die Fläche des Trapezes beträgt 320 cm 2. Das Trapez sei wie folgt: Wenn wir die kleinere Seite CD = a und die größere Seite AB = 4a und BC = a / (2/5) = (5a) / 2 annehmen. Als solches gilt BC = AD = (5a) / 2, CD = a und AB = 4a. Daher ist der Umfang (5a) / 2xx2 + a + 4a = 10a. Aber der Umfang beträgt 80 cm. Daher ist a = 8 cm. und zwei parallele Seiten, die als a und b dargestellt sind, sind 8 cm. und 32 cm. Nun zeichnen wir die Senkrechten von C und D nach AB, die zwei identische rechtwinklige Dreiecke bilden, deren Hypotenuse 5 / 2xx8 = 20 cm beträgt. und die Basis ist (4xx8-8) / 2 = 12 und
Ein Dreieck hat die Eckpunkte A, B und C.Scheitelpunkt A hat einen Winkel von pi / 2, Scheitelpunkt B hat einen Winkel von (pi) / 3 und die Fläche des Dreiecks beträgt 9. Was ist die Fläche des Inkreises des Dreiecks?
Eingeschriebener Kreis Fläche = 4.37405 "" quadratische Einheiten Lösen Sie die Seiten des Dreiecks mit der angegebenen Fläche = 9 und den Winkeln A = pi / 2 und B = pi / 3. Verwenden Sie die folgenden Formeln für Fläche: Fläche = 1/2 * a * b * sin C Fläche = 1/2 * b * c * sin A Fläche = 1/2 * a * c * sin B, sodass wir 9 = 1 haben / 2 * a * b * sin (pi / 6) 9 = 1/2 * b * c * sin (pi / 2) 9 = 1/2 * a * c * sin (pi / 3) Gleichzeitige Lösung unter Verwendung dieser Gleichungen Ergebnis a = 2 * root4 108 b = 3 * root4 12 c = root4 108 Löse die Hälfte des Umfangs