Mit zunehmender Konzentration der Reaktanten steigt die Reaktionsgeschwindigkeit. Dies ist auf die erhöhte Anzahl von Reaktionspartikeln zurückzuführen, die häufiger miteinander kollidieren. Eine größere Häufigkeit effektiver Kollisionen erhöht die Reaktionsgeschwindigkeit.
Hier ist ein Video eines Experiments, das die Änderung der Reaktionsgeschwindigkeit veranschaulicht, wenn die Konzentration der Reaktanten geändert wird.
Ein Modellzug mit einer Masse von 5 kg bewegt sich auf einer Kreisbahn mit einem Radius von 9 m. Wenn sich die Drehrate des Zuges von 4 Hz auf 5 Hz ändert, um wie viel ändert sich die von den Gleisen aufgebrachte Zentripetalkraft?
Siehe unten: Ich denke, der beste Weg, dies zu tun, besteht darin, herauszufinden, wie sich die Zeitdauer der Drehung ändert: Zeitdauer und Häufigkeit sind wechselseitig: f = 1 / (T) Die Zeitdauer der Drehung des Zuges ändert sich also von 0,25 Sekunden bis 0,2 Sekunden. Wenn die Frequenz ansteigt. (Wir haben mehr Umdrehungen pro Sekunde) Der Zug muss jedoch immer noch die gesamte Länge des Umfangs der Kreisbahn zurücklegen. Kreisumfang: 18 pi Meter Geschwindigkeit = Entfernung / Zeit (18 pi) / 0,25 = 226,19 ms ^ -1 bei Frequenz 4 Hz (Zeitdauer = 0,25 s) (18pi) / 0,222882,74 ms ^ -1 bei Frequenz 5
Ein Modellzug mit einer Masse von 4 kg bewegt sich auf einer Kreisbahn mit einem Radius von 3 m. Wenn sich die kinetische Energie des Zugs von 12 J auf 48 J ändert, um wie viel ändert sich die von den Gleisen aufgebrachte Zentripetalkraft?
Zentripetalkraft ändert sich von 8N zu 32N Die kinetische Energie K eines Objekts, dessen Masse m sich mit einer Geschwindigkeit von v bewegt, ist mit 1/2 mv ^ 2 gegeben. Wenn die kinetische Energie 48/12 = 4-fach ansteigt, wird die Geschwindigkeit verdoppelt. Die Anfangsgeschwindigkeit wird durch v = sqrt (2K / m) = sqrt (2xx12 / 4) = sqrt6 angegeben und wird nach Erhöhung der kinetischen Energie 2sqrt6. Wenn sich ein Objekt mit konstanter Geschwindigkeit auf einer Kreisbahn bewegt, erfährt es, dass eine Zentripetalkraft gegeben ist durch F = mv ^ 2 / r, wobei: F die Zentripetalkraft ist, m die Masse ist, v
Ein Modellzug mit einer Masse von 3 kg bewegt sich auf einer Kreisbahn mit einem Radius von 1 m. Wenn sich die kinetische Energie des Zugs von 21 j auf 36 j ändert, um wie viel ändert sich die von den Gleisen aufgebrachte Zentripetalkraft?
Um es einfach zu machen, lasst uns herausfinden, in welchem Verhältnis kinetische Energie und Zentripetalkraft zu den Dingen stehen, die wir kennen: Wir wissen: "K.E." = 1 / 2mom ^ 2r ^ 2 und "Zentripetalkraft" = Momega ^ 2r Daher bleibt "K.E" = 1 / 2xx "Zentripetalkraft" xxr. Anmerkung r bleibt im Verlauf des Prozesses konstant. Daher ist Delta "Zentripetalkraft" = (2D Delta K.E)) / r = (2 (36-21) J) / (1m) = 30N