Antworten:
Erläuterung:
wir brauchen
für die angegebene Zeile
so die geforderte Gl. wird
es geht durch
Wie lautet die Gleichung der Linie, die durch (0, -1) verläuft und senkrecht zu der Linie ist, die durch die folgenden Punkte verläuft: (8, -3), (1,0)?
7x-3y + 1 = 0 Die Steigung der Linie, die zwei Punkte (x_1, y_1) und (x_2, y_2) verbindet, ist gegeben durch (y_2-y_1) / (x_2-x_1) oder (y_1-y_2) / (x_1-x_2) ) Da die Punkte (8, -3) und (1, 0) sind, wird die Steigung der Verbindungslinie durch (0 - (- 3)) / (1-8) oder (3) / (- 7) gegeben. dh -3/7. Das Produkt der Neigung zweier senkrechter Linien ist immer -1. Daher ist die Steigung der Linie senkrecht dazu 7/3 und daher kann die Gleichung in Steigungsform als y = 7 / 3x + c geschrieben werden. Wenn dieser Punkt durch den Punkt (0, -1) geht, werden diese Werte in die obige Gleichung gesetzt -1 = 7/3 * 0 + c oder c = 1 Dahe
Wie lautet die Gleichung der Linie, die durch (0, -1) verläuft und senkrecht zu der Linie ist, die durch die folgenden Punkte verläuft: (13,20), (16,1)?
Y = 3/19 * x-1 Die Steigung der Linie verläuft durch (13,20) und (16,1) ist m_1 = (1-20) / (16-13) = - 19/3. Wir kennen den Zustand von Perpedikularität zwischen zwei Linien ist das Produkt ihrer Steigungen gleich -1: .m_1 * m_2 = -1 oder (-19/3) * m_2 = -1 oder m_2 = 3/19 Die durchlaufende Linie (0, -1) ) ist y + 1 = 3/19 * (x-0) oder y = 3/19 * x-1 Graph {3/19 * x-1 [-10, 10, -5, 5]} [Ans]
Wie lautet die Gleichung der Linie, die durch (-1,3) verläuft und senkrecht zu der Linie ist, die durch die folgenden Punkte verläuft: (6, -4), (5,2)?
Endgültige Antwort: 6y = x + 19 oe. Definieren einer Zeile, die durch a: (- 1, 3) als l_1 geht. Definieren einer Linie, die durch b verläuft: (6, -4), c: (5, 2) als l_2. Finde die Steigung von l_2. m_2 = (y_b-y_c) / (x_b-x_c) = (- 4-2) / (6-5) = - 6 l_2_ | _l_1 Also m_1 = -1 / m_2 = -1 / -6 = 1/6 Gleichung von l_1: y-y_a = m_1 (x-x_a) y-3 = 1/6 (x + 1) 6y-18 = x + 1 6y = x + 19 Oder wie Sie es wünschen.