Antworten:
Endgültige Antwort:
Erläuterung:
Linie definieren, die durchläuft
Linie definieren, die durchläuft
Finde den Farbverlauf von
So
Gleichung von
Oder wie auch immer Sie es arrangiert haben möchten.
Wie lautet die Gleichung der Linie, die durch (0, -1) verläuft und senkrecht zu der Linie ist, die durch die folgenden Punkte verläuft: (8, -3), (1,0)?
7x-3y + 1 = 0 Die Steigung der Linie, die zwei Punkte (x_1, y_1) und (x_2, y_2) verbindet, ist gegeben durch (y_2-y_1) / (x_2-x_1) oder (y_1-y_2) / (x_1-x_2) ) Da die Punkte (8, -3) und (1, 0) sind, wird die Steigung der Verbindungslinie durch (0 - (- 3)) / (1-8) oder (3) / (- 7) gegeben. dh -3/7. Das Produkt der Neigung zweier senkrechter Linien ist immer -1. Daher ist die Steigung der Linie senkrecht dazu 7/3 und daher kann die Gleichung in Steigungsform als y = 7 / 3x + c geschrieben werden. Wenn dieser Punkt durch den Punkt (0, -1) geht, werden diese Werte in die obige Gleichung gesetzt -1 = 7/3 * 0 + c oder c = 1 Dahe
Wie lautet die Gleichung der Linie, die durch (0, -1) verläuft und senkrecht zu der Linie ist, die durch die folgenden Punkte verläuft: (13,20), (16,1)?
Y = 3/19 * x-1 Die Steigung der Linie verläuft durch (13,20) und (16,1) ist m_1 = (1-20) / (16-13) = - 19/3. Wir kennen den Zustand von Perpedikularität zwischen zwei Linien ist das Produkt ihrer Steigungen gleich -1: .m_1 * m_2 = -1 oder (-19/3) * m_2 = -1 oder m_2 = 3/19 Die durchlaufende Linie (0, -1) ) ist y + 1 = 3/19 * (x-0) oder y = 3/19 * x-1 Graph {3/19 * x-1 [-10, 10, -5, 5]} [Ans]
Wie lautet die Gleichung der Linie, die durch (0, -1) verläuft und senkrecht zu der Linie ist, die durch die folgenden Punkte verläuft: (-5,11), (10,6)?
Y = 3x-1 "die Gleichung einer geraden Linie ist gegeben durch" y = mx + c "wobei m = der Gradient & c =" der y-Achsenabschnitt "" wir wollen den Gradienten der Linie senkrecht zu der Linie " "Durch die gegebenen Punkte gehen" (-5,11), (10,6) werden wir "" m_1m_2 = -1 für die gegebene Linie m_1 = (Deltay) / (Deltax) = (y_2-y_1) / (x_2) brauchen -x_1): m_1 = (11-6) / (- 5-10) = 5 / -15 = -5 / 15 = -1 / 3 "m_1m_2 = -1 => - 1 / 3xxm_2 = -1: .m_2 = 3, so dass die erforderliche Gl. wird y = 3x + c, geht er durch (0, -1) -1 = 0 + c => c = -1: .y = 3x-1