Antworten:
1.
Erläuterung:
Gegeben:
#107^90-76^90#
Zuerst beachten Sie das
Ihr Unterschied ist also ungerade und kann nicht durch geteilt werden
Um die Teilbarkeit durch zu prüfen
#107^1 -= 46#
#107^2 -= 46^2 -= 2116 -= 42#
#76^1 -= 15#
#76^2 -= 15^2 -= 225 -= 42#
So:
#107^2-76^2 -= 0# modulo#61#
Das ist
Dann:
#107^90-76^90#
#= (107^2-76^2)(107^88+107^86*76^2+107^84*76^4+…+76^88)#
So:
#107^90-76^90#
ist teilbar durch
Die Zahl 36 hat die Eigenschaft, dass sie durch die Ziffer in der Position Einsen teilbar ist, da 36 durch 6 sichtbar ist. Die Zahl 38 hat diese Eigenschaft nicht. Wie viele Nummern zwischen 20 und 30 haben diese Eigenschaft?
22 ist durch 2 teilbar. 24 ist durch 4 teilbar. 25 ist teilbar durch 5. 30 ist teilbar durch 10, wenn das zählt. Das war es - drei ganz sicher.
120 Studenten warten auf eine Exkursion. Die Schüler sind von 1 bis 120 nummeriert, alle Schüler mit gerader Nummerierung fahren mit dem Bus1, diejenigen, die durch 5 teilbar sind, fahren mit dem Bus2 und diejenigen, deren Nummern durch 7 teilbar sind, fahren mit dem Bus3. Wie viele Schüler haben keinen Bus bekommen?
41 Studenten sind nicht in einen Bus gestiegen. Es gibt 120 Studenten. Auf Bus1 ist die Nummer gerade, d. H. Jeder zweite Student, also 120/2 = 60 Studenten. Beachten Sie, dass jeder zehnte Student, d. H. Bei allen 12 Studenten, die mit Bus2 hätten fahren können, Bus1 verlassen hat. Wie jeder fünfte Schüler in Bus2 geht, sind 120 / 5-12 = 24-12 = 12 Schüler im Bus (weniger 12, die in Bus1 gegangen sind). Nun gehen die durch 7 teilbaren Schüler in Bus3, also 17 (wie 120/7 = 17 1/7), aber diejenigen mit den Nummern {14,28,35,42,56,70,84,98,105,112} - insgesamt sind 10 bereits in Bus1 oder Bus2 g
Die Summe zweier aufeinanderfolgender Zahlen ist 77. Die Differenz zwischen der Hälfte der kleineren und einem Drittel der größeren Zahl ist 6. Wenn x die kleinere Zahl ist und y die größere Zahl ist, stellen die beiden Gleichungen die Summe und die Differenz dar die Zahlen?
X + y = 77 1 / 2x-1 / 3y = 6 Wenn Sie die Zahlen wissen wollen, lesen Sie weiter: x = 38 y = 39