Antworten:
Die Gegend ist
Erläuterung:
Es gibt eine Gleichung für die Fläche eines Kreises:
Woher
Wenn wir schreiben
Antworten:
Die Fläche des Kreises ist
Erläuterung:
Die Fläche eines Kreises wird mit dieser Gleichung definiert:
Wann
Die Höhe eines Kreiszylinders eines gegebenen Volumens variiert umgekehrt wie das Quadrat des Radius der Basis. Um wie viel größer ist der Radius eines Zylinders mit 3 m Höhe als der Radius eines Zylinders mit 6 m Höhe bei gleichem Volumen?
Der Zylinderradius von 3 m Höhe ist 2 mal größer als der von 6 m hohen Zylindern. H_1 = 3 m sei die Höhe und r_1 der Radius des 1. Zylinders. Sei h_2 = 6m die Höhe und r_2 der Radius des 2. Zylinders. Das Volumen der Zylinder ist gleich. h prop 1 / r ^ 2:. h = k * 1 / r ^ 2 oder h * r ^ 2 = k:. h_1 * r_1 ^ 2 = h_2 * r_2 ^ 2 3 * r_1 ^ 2 = 6 * r_2 ^ 2 oder (r_1 / r_2) ^ 2 = 2 oder r_1 / r_2 = sqrt2 oder r_1 = sqrt2 * r_2 Der Radius des Zylinders von 3 m hoch ist um das 2-fache höher als das eines 6 m hohen Zylinders [Ans]
Der Radius des größeren Kreises ist doppelt so lang wie der Radius des kleineren Kreises. Die Fläche des Donuts beträgt 75 Pi. Finden Sie den Radius des kleineren (inneren) Kreises.
Der kleinere Radius ist 5. Sei r = der Radius des inneren Kreises. Dann ist der Radius des größeren Kreises 2r. Aus der Referenz erhalten wir die Gleichung für die Fläche eines Annulus: A = pi (R ^ 2-r ^ 2) Ersetzen Sie 2r durch R: A = pi ((2r) ^ 2-r ^ 2) Vereinfachen Sie: A = pi ((4r ^ 2- r ^ 2) A = 3pir ^ 2 Ersetzen Sie im angegebenen Bereich: 75pi = 3pir ^ 2 Teilen Sie beide Seiten durch 3pi: 25 = r ^ 2 r = 5
Zwei parallele Akkorde eines Kreises mit Längen von 8 und 10 dienen als Basis eines in den Kreis eingeschriebenen Trapezes. Wenn die Länge eines Kreisradius 12 ist, wie groß ist die Fläche eines solchen beschriebenen Trapezes?
72 * sqrt (2) + 9 * sqrt (119) ~ = 200.002 1 und 2 Schematisch könnten wir ein Parallelogramm ABCD in einem Kreis einfügen, und unter der Bedingung, dass die Seiten AB und CD Akkorde der Kreise sind, entweder in Abbildung 1 oder in Abbildung 2. Die Bedingung, dass die Seiten AB und CD sein müssen Akkorde des Kreises implizieren, dass das eingeschriebene Trapez ein gleichschenkliges Trapez sein muss, da die Diagonalen des Trapezoids (AC und CD) gleich sind, weil A hat BD = B hat AC = B hatD C = A hat CD und die Linie senkrecht zu AB und CD durch das Zentrum E halbiert diese Akkorde (dies bedeutet, dass AF = B