
Antworten:
Der kleinere Radius beträgt 5
Erläuterung:
Sei r = der Radius des inneren Kreises.
Dann ist der Radius des größeren Kreises
Aus der Referenz erhalten wir die Gleichung für die Fläche eines Annulus:
Ersatz 2r für R:
Vereinfachen:
Ersatz in dem angegebenen Bereich:
Teilen Sie beide Seiten durch
Die Bereiche der beiden Zifferblätter haben ein Verhältnis von 16:25. Wie ist das Verhältnis des Radius des kleineren Zifferblatts zum Radius des größeren Ziffernblatts? Wie groß ist der Radius des größeren Zifferblattes?

5 A_1: A_2 = 16: 25 A = pir ^ 2 => pir_1 ^ 2: pir_2 ^ 2 = 16: 25 => (pir_1 ^ 2) / (pir_2 ^ 2) = 16/25 => (r_1 ^ 2) / (r_2 ^ 2) = 4 ^ 2/5 ^ 2 => r_1 / r_2 = 4/5 => r_1: r_2 = 4: 5 => r_2 = 5
Zwei Winkel bilden ein lineares Paar. Das Maß für den kleineren Winkel ist das halbe Maß für den größeren Winkel. Wie groß ist das Maß für den größeren Winkel?

120 ^ @ Winkel in einem linearen Paar bilden eine gerade Linie mit einem Gesamtgradmaß von 180 ^ @. Wenn der kleinere Winkel in dem Paar das halbe Maß des größeren Winkels ist, können wir sie als solche in Beziehung setzen: Kleinerer Winkel = x ^ @ Größerer Winkel = 2x ^ @ Da die Summe der Winkel 180 ^ @ ist, können wir sagen dass x + 2x = 180. Dies vereinfacht sich zu 3x = 180, also x = 60. Daher ist der größere Winkel (2xx60) ^ @ oder 120 ^ @.
Die Kerndichte eines Planeten ist rho_1 und die der äußeren Hülle ist rho_2. Der Radius des Kerns ist R und der des Planeten 2R. Das Gravitationsfeld an der äußeren Oberfläche des Planeten ist das gleiche wie an der Oberfläche des Kerns, was das Verhältnis rho / rho_2 ist. ?

3 Nehmen wir an, die Masse des Kerns des Planeten ist m und die der äußeren Schale ist m '. Das Feld auf der Oberfläche des Kerns ist (Gm) / R ^ 2. Auf der Oberfläche der Schale wird es (G (m + m ')) / (2R) ^ 2 Gegebenermaßen sind beide gleich, also (Gm) / R ^ 2 = (G (m + m')) / (2R) ^ 2 oder 4m = m + m 'oder m' = 3m Nun ist m = 4/3 pi R ^ 3 rho_1 (Masse = Volumen * Dichte) und m '= 4/3 pi ((2R) ^ 3 -R ^ 3) rho_2 = 4 / 3 pi 7R ^ 3 rho_2 Daher ist 3m = 3 (4/3 pi R ^ 3 rho_1) = m '= 4/3 pi 7R ^ 3 rho_2 Also ist rho_1 = 7/3 rho_2 oder (rho_1) / (rho_1) / ) = 7/3