Antworten:
Siehe unten
Erläuterung:
weil
Die Fläche eines Dreiecks beträgt 24 cm². Die Basis ist 8 cm länger als die Höhe. Verwenden Sie diese Informationen, um eine quadratische Gleichung festzulegen. Lösen Sie die Gleichung, um die Länge der Basis zu ermitteln.
Die Länge der Basis sei x, also die Höhe x-8, also ist die Fläche des Dreiecks 1/2 x (x-8) = 24 oder x ^ 2 -8x-48 = 0 oder x ^ 2 -12x + 4x-48 = 0 oder x (x-12) +4 (x-12) = 0 oder (x-12) (x + 4) = 0, also entweder x = 12 oder x = -4 Die Länge des Dreiecks kann jedoch nicht negativ sein, daher beträgt die Basislänge hier 12 cm
Die Summe von zwei Zahlen ist 4,5 und ihr Produkt ist 5. Was sind die beiden Zahlen? Bitte helfen Sie mir bei dieser Frage. Könnten Sie bitte eine Erklärung geben, nicht nur die Antwort, damit ich lernen kann, in Zukunft ähnliche Probleme zu lösen. Vielen Dank!
5/2 = 2,5 und 2. Angenommen, x und y sind die Anforderungen. Nr.Dann haben wir, was gegeben ist, (1): x + y = 4,5 = 9/2 und (2): xy = 5. Aus (1) ist y = 9/2-x. Durch Einsetzen dieses y in (2) haben wir x (9/2-x) = 5 oder x (9-2x) = 10, d. H. 2x ^ 2-9x + 10 = 0. :. ul (2x ^ 2-5x) -ul (4x + 10) = 0. :. x (2x-5) -2 (2x-5) = 0. :. (2x-5) (x-2) = 0. :. x = 5/2 oder x = 2. Wenn x = 5/2, ist y = 9/2-x = 9 / 2-5 / 2 = 2, und wenn x = 2 ist, ist y = 9 / 2-2 = 5/2 = 2,5. Somit sind 5/2 = 2,5 und 2 die gewünschten Nummern. Genießen Sie Mathe.!
Welche Aussage beschreibt die Gleichung (x + 5) 2 + 4 (x + 5) + 12 = 0 am besten? Die Gleichung hat eine quadratische Form, da sie mit einer u-Substitution u = (x + 5) als quadratische Gleichung umgeschrieben werden kann. Die Gleichung hat eine quadratische Form, denn wenn sie erweitert wird,
Wie unten erläutert, wird die u-Substitution sie in u als quadratisch beschreiben. Bei Quadrat in x hat seine Expansion die höchste Potenz von x als 2, am besten als quadratisch in x.