Was ist das kleinste gemeinsame Vielfache von 16, 18 und 9?

Was ist das kleinste gemeinsame Vielfache von 16, 18 und 9?
Anonim

Antworten:

#144#

Erläuterung:

Das LCM ist die Nummer, in die alle angegebenen Zahlen eingegeben werden. In diesem Fall sind sie es #16#, #18# und #9#.

Denken Sie daran, dass eine beliebige Anzahl #18# geht hinein kann auch durch geteilt werden #9#.

Wir müssen uns also nur auf uns konzentrieren #16# und #18#.

16: 16, 32, 48, 64, 80, 96, 112, 128, 144

18: 36, 54, 72, 90, 108, 126, 144

Deshalb, #144# geht in allen Zahlen 16, 18 und 9.

Antworten:

144

Erläuterung:

# 16 = 2 x x 2 x x 2 x x 2 # braucht 4 2's

# 18 = 2 xx 3 xx 3 # braucht 1 2 und 2 3's

# 9 = 3 xx 3 # braucht 2 3's

Das LCM benötigt 4 2 und 2 3 (keine Wiederholung der Faktoren)

# 2 xx 2 xx 2 xx 2 xx 3 xx 3 = 144 #

# 9 x 16 = 144 #

# 18 x 8 = 144 #