
Antworten:
Länge
Breite
Erläuterung:
Msgstr "Die Länge eines Rechtecks ist weniger als das Dreifache der Breite."
was bedeutet:
Also addieren wir die Längen und Breiten und stellen sie ein
Wir schließen das an
Die Fläche eines Rechtecks beträgt 42 yd ^ 2, und die Länge des Rechtecks beträgt 11 yd weniger als das Dreifache der Breite. Wie finden Sie die Abmessungen Länge und Breite?

Die Abmessungen lauten wie folgt: Breite (x) = 6 Yards Länge (3x -11) = 7 Yards Fläche des Rechtecks = 42 Quadratmeter. Lass die Breite = x Yards. Die Länge ist 11 Meter weniger als dreimal die Breite: Länge = 3x -11 Meter. Fläche des Rechtecks = Länge xx Breite 42 = (3x-11) xx (x) 42 = 3x ^ 2 - 11x 3x ^ 2 - 11x - 42 = 0 Wir können den mittleren Term dieses Ausdrucks aufteilen, um ihn zu faktorisieren Lösungen. 3x ^ 2 - 11x - 42 = 3x ^ 2 - 18x + 7x - 42 = 3x (x-6) + 7 (x-6) (3x-7) (x-6) sind die Faktoren, die wir mit Null gleichsetzen um x Lösung 1 zu erhalten: 3x-7 = 0, x = 7
Die Länge eines Rechtecks beträgt 3 Zentimeter mehr als das Dreifache der Breite. Wenn der Umfang des Rechtecks 46 Zentimeter beträgt, wie groß sind die Abmessungen des Rechtecks?

Länge = 18 cm, Breite = 5 cm> Beginnen Sie, indem Sie width = x, dann length = 3x + 3 lassen. Jetzt ist Umfang (P) = (2xx "length") + (2xx "width"). rArrP = color (rot) (2) (3x) +3) + Farbe (rot) (2) (x) verteilen und sammeln "ähnliche Ausdrücke" rArrP = 6x + 6 + 2x = 8x + 6 Da jedoch auch P gleich 46 ist, können wir die beiden Ausdrücke für P gleichsetzen .rArr8x + 6 = 46 subtrahieren Sie 6 von beiden Seiten der Gleichung. 8x + annullieren (6) -Cancel (6) = 46-6rArr8x = 40 beide Seiten durch 8 teilen, um nach x zu lösen. rArr (stornieren (8) ^ 1 x) / stor
Die Länge eines Rechtecks beträgt das Dreifache seiner Breite. Wenn die Länge um 2 Zoll und die Breite um 1 Zoll vergrößert würde, würde der neue Umfang 62 Zoll betragen. Was ist die Breite und Länge des Rechtecks?

Länge ist 21 und Breite ist 7. Ich benutze l für Länge und w für Breite. Zuerst wird angegeben, dass l = 3w gilt. Neue Länge und Breite ist l + 2 bzw. w + 1. Neuer Umfang ist 62. Also, l + 2 + l + 2 + w + 1 + w + 1 = 62 oder, 2l + 2w = 56 l + w = 28 Nun haben wir zwei Beziehungen zwischen l und w. Ersetzen Sie den ersten Wert von l in der zweiten Gleichung. Wir erhalten 3w + w = 28 4w = 28 w = 7 Setzen Sie diesen Wert von w in eine der Gleichungen: l = 3 * 7 l = 21 Also Länge ist 21 und Breite ist 7