Antworten:
Die Gleichung der Senkrechten ist
Erläuterung:
Die Steigung der Linie
Vergleich der Standardform der Steilheit mit der Steigung
senkrechte Linien sind
oder
Gefälle - Schnittform ist
wird die Liniengleichung erfüllen
oder
Die Gleichung einer Linie ist 2x + 3y - 7 = 0. Finden Sie: - (1) Steigung der Linie (2) die Gleichung einer Linie senkrecht zu der angegebenen Linie und durch den Schnittpunkt der Linie x-y + 2 = 0 und 3x + y-10 = 0?
-3x + 2y-2 = 0 Farbe (weiß) ("ddd") -> Farbe (weiß) ("ddd") y = 3 / 2x + 1 Der erste Teil enthält viele Details, die zeigen, wie die ersten Prinzipien funktionieren. Wenn Sie sich daran gewöhnt haben und Kurzwahlen verwenden, werden Sie weniger Zeilen verwenden. Farbe (blau) ("Bestimmen Sie den Schnittpunkt der Anfangsgleichungen") x-y + 2 = 0 "" ....... Gleichung (1) 3x + y-10 = 0 "" .... Gleichung ( 2) Ziehen Sie x von beiden Seiten von Gleichung (1) ab, und erhalten Sie -y + 2 = -x. Multiplizieren Sie beide Seiten mit (-1) + y-2 = + x ) Verwenden S
Die Linie L hat die Gleichung 2x-3y = 5 und die Linie M verläuft durch den Punkt (2, 10) und steht senkrecht zur Linie L. Wie bestimmen Sie die Gleichung für die Linie M?
In der Neigungspunktform ist die Gleichung der Linie M y-10 = -3 / 2 (x-2). In der Neigungsabschnittform ist es y = -3 / 2x + 13. Um die Steigung der Linie M zu finden, müssen wir zuerst die Steigung der Linie L ableiten. Die Gleichung für die Linie L ist 2x-3y = 5. Dies ist eine Standardform, die die Steigung von L nicht direkt angibt. Wir können diese Gleichung jedoch durch Auflösen nach y in die Neigungsschnittform umordnen: 2x-3y = 5 Farbe (weiß) (2x) -3y = 5-2x "" (2x von beiden Seiten abziehen) Farbe (weiß) (2x-3) y = (5-2x) / (- 3) "" (beide Seiten durch -3 teilen) F
Wie lautet die Gleichung einer Linie, die durch den Punkt (0, 2) verläuft und senkrecht zu einer Linie mit einer Steigung von 3 verläuft?
Y = -1/3 x + 2> Für 2 senkrechte Linien mit Gradienten m_1 "und" m_2 dann m_1. m_2 = -1 hier 3 xx m = - 1 rArr m = -1/3 Gleichung der Linie, y - b = m (x - a) ist erforderlich. mit m = -1/3 "und (a, b) = (0, 2)" also y - 2 = -1/3 (x - 0) rArr y = -1/3 x + 2