
Antworten:
Die Länge ist
Erläuterung:
Fläche des Rechtecks (A) = Länge (L) * Breite (B). Also Länge = Fläche / Breite.
oder
Die Länge eines Rechtecks beträgt 3,5 Zoll mehr als seine Breite. Der Umfang des Rechtecks beträgt 31 Zoll. Wie finden Sie die Länge und Breite des Rechtecks?

Länge = 9,5 ", Breite = 6" Beginnen Sie mit der Umfangsgleichung: P = 2l + 2w. Dann geben Sie an, welche Informationen wir kennen. Der Umfang beträgt 31 "und die Länge entspricht der Breite + 3,5". Dazu gilt: 31 = 2 (w + 3,5) + 2w, weil l = w + 3,5. Dann lösen wir nach w, indem wir alles durch 2 teilen. Wir bleiben dann bei 15.5 = w + 3.5 + w. Dann subtrahieren Sie 3,5 und kombinieren Sie die w, um zu erhalten: 12 = 2w. Schließlich dividiere noch mal durch 2, um w zu finden, und wir erhalten 6 = w. Dies sagt uns, dass die Breite 6 Zoll beträgt, die Hälfte des Problems.
Die Länge eines Rechtecks beträgt 4 weniger als die doppelte Breite. Die Fläche des Rechtecks beträgt 70 Quadratfuß. Finden Sie die Breite w des Rechtecks algebraisch. Erklären Sie, warum eine der Lösungen für w nicht praktikabel ist. ?

Eine Antwort ist negativ und die Länge kann niemals 0 oder darunter sein. Sei w = "Breite" Sei 2w - 4 = "Länge" "Fläche" = ("Länge") ("Breite") (2w - 4) (w) = 70 2w ^ 2 - 4w = 70 w ^ 2 - 2w = 35 w ^ 2 - 2w - 35 = 0 (w-7) (w + 5) = 0 Also ist w = 7 oder w = -5 w = -5 nicht möglich, da Messungen über Null liegen müssen.
Die Breite und Länge eines Rechtecks sind auch aufeinanderfolgende ganze Zahlen. Wenn die Breite um 3 Zoll verringert wird. dann ist die Fläche des resultierenden Rechtecks 24 Quadratzoll. Was ist die Fläche des ursprünglichen Rechtecks?

48 "Quadratzoll" "lass die Breite" = n "dann Länge" = n + 2 n "und" n + 2Farbe (blau) "sind aufeinanderfolgende, auch ganze Zahlen" "die Breite wird um" 3 "Zoll" rArr "Breite verringert "= n-3" -Fläche = "Länge" xx "Breite" rArr (n + 2) (n-3) = 24 rArrn ^ 2-n-6 = 24 rArrn ^ 2-n-30 = 0Larrcolor (blau) "in Standardform" die Faktoren von - 30, die sich zu - 1 summieren, sind + 5 und - 6 "rArr (n-6) (n + 5) = 0" gleicht jeden Faktor mit Null aus und löst für n n-6 auf = 0rArrn =