Antworten:
Erläuterung:
Es gibt eine spezielle Formel für den Umfang eines Kreises, und es ist:
Das Problem sagt uns das
Der Umfang beträgt ungefähr
Die Höhe eines Kreiszylinders eines gegebenen Volumens variiert umgekehrt wie das Quadrat des Radius der Basis. Um wie viel größer ist der Radius eines Zylinders mit 3 m Höhe als der Radius eines Zylinders mit 6 m Höhe bei gleichem Volumen?
Der Zylinderradius von 3 m Höhe ist 2 mal größer als der von 6 m hohen Zylindern. H_1 = 3 m sei die Höhe und r_1 der Radius des 1. Zylinders. Sei h_2 = 6m die Höhe und r_2 der Radius des 2. Zylinders. Das Volumen der Zylinder ist gleich. h prop 1 / r ^ 2:. h = k * 1 / r ^ 2 oder h * r ^ 2 = k:. h_1 * r_1 ^ 2 = h_2 * r_2 ^ 2 3 * r_1 ^ 2 = 6 * r_2 ^ 2 oder (r_1 / r_2) ^ 2 = 2 oder r_1 / r_2 = sqrt2 oder r_1 = sqrt2 * r_2 Der Radius des Zylinders von 3 m hoch ist um das 2-fache höher als das eines 6 m hohen Zylinders [Ans]
Wie groß ist der Umfang eines 15-Zoll-Kreises, wenn der Durchmesser eines Kreises direkt proportional zu seinem Radius ist und ein Kreis mit 2 Zoll Durchmesser einen Umfang von ungefähr 6,28 Zoll hat?
Ich glaube, der erste Teil der Frage sollte sagen, dass der Umfang eines Kreises direkt proportional zu seinem Durchmesser ist. Diese Beziehung ist, wie wir Pi bekommen. Wir kennen den Durchmesser und den Umfang des kleineren Kreises "2 in" bzw. "6,28 in". Um das Verhältnis zwischen Umfang und Durchmesser zu bestimmen, dividieren wir den Umfang durch den Durchmesser "6.28 in" / "2 in" = "3.14", was sehr nach pi aussieht. Nun, da wir den Anteil kennen, können wir den Durchmesser des größeren Kreises multiplizieren, um den Umfang des Kreises zu berechnen.
Welches Dach ist steiler: eines mit einem Anstieg von 8 und einem Lauf von 4 oder eines mit einem Anstieg von 12 und einem Lauf von 7?
Das erste Dach ist steiler. Schreiben wir zuerst die Steigungen als Brüche: Slope = m = "Anstieg" / "Laufen" m_1 = 8/4 und m_2 = 12/7 Zum Vergleich: als vereinfachte Brüche. m_1 = 2 und m_2 = 1 5/12 als Brüche mit einem gemeinsamen Nenner: m_1 = 56/28 und m_2 = 48/28 als Dezimalzahlen: m_1 = 2 und m_2 = 1.716 In allen Fällen sehen wir, dass das erste Dach steiler ist.