Wie unterscheidet man f (x) = tan (e ^ ((lnx-2) ^ 2)) anhand der Kettenregel?

Wie unterscheidet man f (x) = tan (e ^ ((lnx-2) ^ 2)) anhand der Kettenregel?
Anonim

Antworten:

# ((2sec ^ 2 (e ((In (x) -2))) (2 (2) -2) (2 (2))) (lnx (x) - 2))

Erläuterung:

# d / dx (tan (e ^ ((In (x) -2) ^ 2))) = sec ^ 2 (e ((ln (x) -2) ^ 2)) * d / dx ((e ^ ((ln (x) -2) ^ 2)) #

=# sec ^ 2 (e ^ ((In (x) -2) ^ 2)) e ^ (((In (x) -2)) ^ 2) * d / dx (In (x) -2) ^ 2 #

=# sec ^ 2 (e ^ ((In (x) -2) ^ 2)) e ^ (((In (x) -2)) ^ 2) 2 (Inx-2) * d / dx (Inx-2) #

=# (sec ^ 2 (e ((In (x) -2)) (2)) e (((In (x) - 2)) ^ 2) 2 (Inx-2) * 1 / x) #

=# ((2sec ^ 2 (e ((In (x) -2))) (2 (2) -2) (2 (2))) (lnx (x) - 2))