Antworten:
Erläuterung:
Die Kettenregel:
Die Machtregel:
Anwendung dieser Regeln:
1 Die innere Funktion
2 Nehmen Sie die Ableitung der äußeren Funktion anhand der Potenzregel
3 Nehmen Sie die Ableitung der inneren Funktion
4 Multiplizieren
Lösung:
Wie unterscheidet man f (x) = sqrt (cote ^ (4x) anhand der Kettenregel.)
F '(x) = (- 4e ^ (4x) csc ^ 2 (e ^ (4x)) (Kinderbett (e ^ (4x))) ^ (- 1/2)) / 2 Farbe (weiß) (f' (x)) = - (2e ^ (4x) csc ^ 2 (e ^ (4x))) / sqrt (Kinderbett (e ^ (4x)) f (x) = sqrt (Kinderbett (e ^ (4x))) Farbe (weiß) (f (x)) = Quadrat (g (x)) f '(x) = 1/2 * (g (x)) ^ (- 1/2) * g' (x) Farbe (weiß) (f '(x)) = (g' (x) (g (x)) ^ (- 1/2)) / 2 g (x) = Bett (e ^ (4x)) Farbe (weiß) (g) (x)) = cot (h (x)) g '(x) = - h' (x) csc ^ 2 (h (x)) h (x) = e ^ (4x) Farbe (weiß) (h ( x)) = e ^ (j (x)) h '(x) = j' (x) e ^ (j (x)) j (x) = 4x j '(x) = 4 h' (x) = 4e ^ (4x) g
Wie unterscheidet man f (x) = sqrt (ln (x ^ 2 + 3) anhand der Kettenregel.?
F '(x) = (x (ln (x ^ 2 + 3)) ^ (- 1/2)) / (x ^ 2 + 3) = x / ((x ^ 2 + 3) (ln (x ^ 2 + 3)) ^ (1/2)) = x / ((x ^ 2 + 3) sqrt (ln (x ^ 2 + 3))) Wir sind gegeben: y = (ln (x ^ 2 + 3) ) ^ (1/2) y '= 1/2 * (In (x ^ 2 + 3)) ^ (1 / 2-1) * d / dx [In (x ^ 2 + 3)] y' = ( ln (x ^ 2 + 3)) ^ (- 1/2) / 2 · d / dx [ln (x ^ 2 + 3)] d / dx [ln (x ^ 2 + 3)] = (d / dx [x ^ 2 + 3]) / (x ^ 2 + 3) d / dx [x ^ 2 + 3] = 2x y '= (In (x ^ 2 + 3)) ^ (- 1/2) / 2 * (2x) / (x ^ 2 + 3) = (x (ln (x ^ 2 + 3)) ^ (- 1/2)) / (x ^ 2 + 3) = x / ((x ^ 2 +) 3) (In (x ^ 2 + 3)) ^ (1/2)) = x / ((x ^ 2 + 3) sqrt (In (x ^ 2 + 3)))
Wie unterscheidet man y = cos (pi / 2x ^ 2-pix) anhand der Kettenregel?
-sin (pi / 2x ^ 2-pix) * (pix-pi) Nehmen Sie zunächst die Ableitung der äußeren Funktion cos (x): -sin (pi / 2x ^ 2-pix). Sie müssen dies aber auch mit der Ableitung dessen, was sich darin befindet, multiplizieren (pi / 2x ^ 2-pix). Diesen Begriff für Begriff tun. Die Ableitung von pi / 2x ^ 2 ist pi / 2 * 2x = pix. Die Ableitung von -pix ist nur -pi. Die Antwort ist also -sin (pi / 2x ^ 2-pix) * (pix-pi)