Antworten:
Ich habe versucht, ein Diagramm zu finden, das dem in meinen Notizen ähnlich ist, aber ich konnte es nicht. Hier ist das Diagramm in Worten.
Ich hoffe das ist detailliert genug!
Erläuterung:
UNTER NORMALEN BEDINGUNGEN: Zellen haben auf ihrer nach innen gerichteten Oberfläche einen "Todsignalrezeptor", so dass kein Signal an sie binden kann. In der Zelle ein Protein namens Ced-9 hemmt die Aktivität von 2 anderen Proteinen (Ced-4 und Ced-3).
APOPTOSE: Ein Enzym namens "Flippase" kippt den Sterbesignalrezeptor nach außen. Wenn ein "Todessignal" daran bindet, wird Ced-9 deaktiviert. Da Ced-4 und Ced-3 nicht mehr gehemmt werden, ist dies jetzt der Fall aktiviert. Es findet eine Kettenreaktion statt, die als "Aktivierungskaskade" bezeichnet wird und letztendlich Nucleasen, Proteasen und andere Enzyme produziert. Diese Enzyme bauen die verschiedenen Arten von Molekülen in der Zelle ab.
Die Zelle stirbt und bricht durch einen Prozess ab, der als "Bläschen" bezeichnet wird. Umliegende Zellen, sogenannte Scavanger-Zellen, verschlingen die sterbende Zelle und recyceln ihre Teile.
Blebbing:
Der Graph der Linie l in der xy-Ebene verläuft durch die Punkte (2,5) und (4,11). Der Graph der Linie m hat eine Steigung von -2 und einen x-Achsenabschnitt von 2. Wenn der Punkt (x, y) der Schnittpunkt der Linien l und m ist, wie lautet dann der Wert von y?
Y = 2 Schritt 1: Bestimmen Sie die Gleichung der Linie l Wir haben die Steigungsformel m = (y_2 - y_1) / (x_2 - x_1) = (11-5) / (4-2) = 3 Jetzt nach Punkt-Steigungsform Die Gleichung lautet y - y_1 = m (x - x_1) y - 11 = 3 (x - 4) y = 3x - 12 + 11 y = 3x - 1 Schritt 2: Bestimmen Sie die Gleichung der Linie m. Der x - Achsenabschnitt wird immer angezeigt habe y = 0. Daher ist der angegebene Punkt (2, 0). Mit der Steigung haben wir die folgende Gleichung. y - y_1 = m (x - x_1) y - 0 = -2 (x - 2) y = -2x + 4 Schritt 3: Schreiben und lösen eines Gleichungssystems Wir möchten die Lösung des Systems {(y =) finden
Das Gewicht eines Objekts auf dem Mond. variiert direkt mit dem Gewicht der Objekte auf der Erde. Ein 90-Pfund-Objekt auf der Erde wiegt 15 Pfund auf dem Mond. Wie viel wiegt es auf dem Mond, wenn ein Objekt auf der Erde 156 Pfund wiegt?
26 Pfund Das Gewicht des ersten Objekts auf der Erde beträgt 90 Pfund, aber auf dem Mond 15 Pfund. Dies gibt uns ein Verhältnis zwischen den relativen Gravitationsfeldstärken der Erde und des Mondes, W_M / (W_E), was das Verhältnis (15/90) = (1/6) von ungefähr 0,167 ergibt. Mit anderen Worten, Ihr Gewicht auf dem Mond ist 1/6 dessen, was es auf der Erde gibt. So multiplizieren wir die Masse des schwereren Objekts (algebraisch) wie folgt: (1/6) = (x) / (156) (x = Masse auf dem Mond) x = (156) mal (1/6) x = 26 Das Gewicht des Objekts auf dem Mond beträgt also 26 Pfund.
Ihr Gewicht auf dem Mars variiert direkt mit Ihrem Gewicht auf der Erde. Eine Person mit einem Gewicht von 125 kg auf der Erde wiegt 47,25 kg auf dem Mars, da der Mars weniger schwerelos ist. Wenn Sie auf der Erde 155 Pfund wiegen, wie viel werden Sie auf dem Mars wiegen?
Wenn Sie auf der Erde 155 Pfund wiegen, würden Sie auf dem Mars 58,59 Pfund wiegen. Wir können dies als Verhältnis angeben: (Gewicht auf dem Mars) / (Gewicht auf der Erde) Nennen wir das Gewicht auf dem Mars, nach dem wir suchen, w. Wir können jetzt schreiben: 47.25 / 125 = w / 155 Wir können jetzt nach w lösen, indem wir jede Seite der Gleichung mit Farbe (Rot) (155) Farbe (Rot) (155) xx 47.25 / 125 = Farbe (Rot) ( 155) xx w / 155 7323.75 / 125 = abbrechen (Farbe (rot) (155)) xx w / Farbe (rot) (abbrechen (Farbe (schwarz) (155))) 58,59 = ww = 58,59