Antworten:
Erläuterung:
Hoffe das hilft!:)
Die Hypotenuse eines rechtwinkligen Dreiecks ist 9 Fuß mehr als das kürzere Bein und das längere Bein ist 15 Fuß. Wie finden Sie die Länge der Hypotenuse und des kürzeren Beins?
Farbe (blau) ("Hypotenuse" = 17) Farbe (blau) ("kurzes Bein" = 8) Es sei bbx die Länge der Hypotenuse. Das kürzere Bein ist 9 Fuß weniger als die Hypotenuse, also beträgt die Länge des kürzeren Beins: x-9 Das längere Bein ist 15 Fuß. Nach dem Satz von Pythagoras ist das Quadrat auf der Hypotenuse gleich der Summe der Quadrate der anderen beiden Seiten: x ^ 2 = 15 ^ 2 + (x-9) ^ 2 Also müssen wir diese Gleichung für x: x ^ lösen 2 = 15 ^ 2 + (x-9) ^ 2 Erweitern Sie die Klammer: x ^ 2 = 15 ^ 2 + x ^ 2-18x + 81 Vereinfachen: 306-18x = 0 x = 306/18 = 17
Das PERIMETER des gleichschenkligen Trapezes ABCD beträgt 80 cm. Die Länge der Linie AB ist viermal größer als die Länge einer CD-Linie, die 2/5 der Länge der Linie BC (oder der Linien, die in der Länge gleich sind) beträgt. Was ist die Fläche des Trapezes?
Die Fläche des Trapezes beträgt 320 cm 2. Das Trapez sei wie folgt: Wenn wir die kleinere Seite CD = a und die größere Seite AB = 4a und BC = a / (2/5) = (5a) / 2 annehmen. Als solches gilt BC = AD = (5a) / 2, CD = a und AB = 4a. Daher ist der Umfang (5a) / 2xx2 + a + 4a = 10a. Aber der Umfang beträgt 80 cm. Daher ist a = 8 cm. und zwei parallele Seiten, die als a und b dargestellt sind, sind 8 cm. und 32 cm. Nun zeichnen wir die Senkrechten von C und D nach AB, die zwei identische rechtwinklige Dreiecke bilden, deren Hypotenuse 5 / 2xx8 = 20 cm beträgt. und die Basis ist (4xx8-8) / 2 = 12 und
Die Summe aus drei Zahlen ist 4. Wenn die erste Zahl verdoppelt und die dritte verdreifacht wird, dann ist die Summe zwei weniger als die zweite. Vier mehr als die erste, die der dritten hinzugefügt wurde, sind zwei mehr als die zweite. Finde die Zahlen?
1. = 2, 2. = 3, 3. = -1 Erstellen Sie die drei Gleichungen: Sei 1. = x, 2. = y und die 3. = z. EQ. 1: x + y + z = 4 EQ. 2: 2x + 3z + 2 = y "=> 2x - y + 3z = -2 EQ. 3: x + 4 + z -2 = y "" => x - y + z = -2 Beseitigen Sie die Variable y: EQ1. + EQ. 2: 3x + 4z = 2 EQ. 1 + EQ. 3: 2x + 2z = 2 Lösen Sie für x, indem Sie die Variable z durch Multiplizieren des EQ eliminieren. 1 + EQ. 3 von -2 und zum EQ addieren. 1 + EQ. 2: (-2) (EQ. 1 + EQ. 3): -4x - 4z = -4 3x + 4z = 2 ul (-4x - 4z = -4) -x = -2 > x = 2 Lösen Sie für z, indem Sie x in den EQ setzen. 2 & EQ. 3: EQ. 2 mit x: 4 - y +