Antworten:
Breite
Erläuterung:
Die Diagonale eines Rechtecks erzeugt ein rechtwinkliges Dreieck, sodass wir den Satz des Pythagoras verwenden können, um nach der fehlenden Seite zu suchen.
Breite
Die Diagonale eines Rechtecks beträgt 13 Zoll. Die Länge des Rechtecks ist 7 Zoll länger als die Breite. Wie finden Sie die Länge und Breite des Rechtecks?
Nennen wir die Breite x. Dann ist die Länge x + 7 Die Diagonale ist die Hypotenuse eines rechteckigen Dreiecks. Also: d ^ 2 = l ^ 2 + w ^ 2 oder (ausfüllen, was wir wissen) 13 ^ 2 = 169 = (x + 7) ^ 2 + x ^ 2 = x ^ 2 + 14x + 49 + x ^ 2 -> 2x ^ 2 + 14x-120 = 0-> x ^ 2 + 7x-60 = 0 Eine einfache quadratische Gleichung, die sich auflöst in: (x + 12) (x-5) = 0-> x = -12orx = 5 Die positive Lösung ist also verwendbar: w = 5 und l = 12 Extra: Das (5,12,13) -Dreieck ist das zweiteinfachste pythagoreische Dreieck (wobei alle Seiten ganze Zahlen sind). Das einfachste ist (3,4,5). Vielfache wie (6,8,10) z
Die Länge eines Rechtecks beträgt das Dreifache seiner Breite. Wenn die Länge um 2 Zoll und die Breite um 1 Zoll vergrößert würde, würde der neue Umfang 62 Zoll betragen. Was ist die Breite und Länge des Rechtecks?
Länge ist 21 und Breite ist 7. Ich benutze l für Länge und w für Breite. Zuerst wird angegeben, dass l = 3w gilt. Neue Länge und Breite ist l + 2 bzw. w + 1. Neuer Umfang ist 62. Also, l + 2 + l + 2 + w + 1 + w + 1 = 62 oder, 2l + 2w = 56 l + w = 28 Nun haben wir zwei Beziehungen zwischen l und w. Ersetzen Sie den ersten Wert von l in der zweiten Gleichung. Wir erhalten 3w + w = 28 4w = 28 w = 7 Setzen Sie diesen Wert von w in eine der Gleichungen: l = 3 * 7 l = 21 Also Länge ist 21 und Breite ist 7
Die Breite und Länge eines Rechtecks sind auch aufeinanderfolgende ganze Zahlen. Wenn die Breite um 3 Zoll verringert wird. dann ist die Fläche des resultierenden Rechtecks 24 Quadratzoll. Was ist die Fläche des ursprünglichen Rechtecks?
48 "Quadratzoll" "lass die Breite" = n "dann Länge" = n + 2 n "und" n + 2Farbe (blau) "sind aufeinanderfolgende, auch ganze Zahlen" "die Breite wird um" 3 "Zoll" rArr "Breite verringert "= n-3" -Fläche = "Länge" xx "Breite" rArr (n + 2) (n-3) = 24 rArrn ^ 2-n-6 = 24 rArrn ^ 2-n-30 = 0Larrcolor (blau) "in Standardform" die Faktoren von - 30, die sich zu - 1 summieren, sind + 5 und - 6 "rArr (n-6) (n + 5) = 0" gleicht jeden Faktor mit Null aus und löst für n n-6 auf = 0rArrn =