Antworten:
Erläuterung:
# r = 3 / 4theta #
# r ^ 2 = 9 / 16theta ^ 2 #
# r '= 3/4 #
# (r ') ^ 2 = 9/16 #
Arclength ist gegeben durch:
# L = int_-pi ^ pisqrt (9 / 16theta ^ 2 + 9/16) dtheta #
Vereinfachen:
# L = 3/4int_-pi ^ pisqrt (Theta ^ 2 + 1) d Theta #
Von der Symmetrie:
# L = 3 / 2int_0 ^ pisqrt (Theta ^ 2 + 1) d Theta #
Wenden Sie die Vertretung an
# L = 3/2sekunden ^ 3phidphi #
Dies ist ein bekanntes Integral:
# L = 3/4 secphitanphi + ln | secphi + tanphi | #
Die Ersetzung umkehren:
# L = 3/4 thetq (theta ^ 2 + 1) + ln | theta + sqrt (theta ^ 2 + 1) | _0 ^ pi #
Fügen Sie die Integrationsgrenzen ein:
# L = 3/4 pisqrt (pi ^ 2 + 1) + 3 / 4ln (pi + sqrt (pi ^ 2 + 1)) #
Die Fläche des Trapezes beträgt 56 Einheiten². Die obere Länge ist parallel zur unteren Länge. Die obere Länge beträgt 10 Einheiten und die untere Länge beträgt 6 Einheiten. Wie würde ich die Höhe finden?
Trapezbereich = 1/2 (b_1 + b_2) xxh Verwenden Sie die Flächenformel und die im Problem angegebenen Werte ... 56 = 1/2 (10 + 6) xxh Lösen Sie nun nach h ... h = 7 Einheiten hoffe das hat geholfen
Das PERIMETER des gleichschenkligen Trapezes ABCD beträgt 80 cm. Die Länge der Linie AB ist viermal größer als die Länge einer CD-Linie, die 2/5 der Länge der Linie BC (oder der Linien, die in der Länge gleich sind) beträgt. Was ist die Fläche des Trapezes?
Die Fläche des Trapezes beträgt 320 cm 2. Das Trapez sei wie folgt: Wenn wir die kleinere Seite CD = a und die größere Seite AB = 4a und BC = a / (2/5) = (5a) / 2 annehmen. Als solches gilt BC = AD = (5a) / 2, CD = a und AB = 4a. Daher ist der Umfang (5a) / 2xx2 + a + 4a = 10a. Aber der Umfang beträgt 80 cm. Daher ist a = 8 cm. und zwei parallele Seiten, die als a und b dargestellt sind, sind 8 cm. und 32 cm. Nun zeichnen wir die Senkrechten von C und D nach AB, die zwei identische rechtwinklige Dreiecke bilden, deren Hypotenuse 5 / 2xx8 = 20 cm beträgt. und die Basis ist (4xx8-8) / 2 = 12 und
Was ist die Bogenlänge von r = 4theta auf Theta in [-pi / 4, pi]?
Ca. 27.879 Dies ist eine Gliederungsmethode. Ein Teil der Arbeit wurde mit dem Computer erledigt. Bogenlänge s = int dot s dt und dot s = sqrt (vec v * vec v) Nun gilt für vec r = 4 theta hatr vec v = dot r hat r + r dot theta hat theta = 4 dot theta Hat r + 4 Theta Punkt Theta Hat Theta = 4 Punkt Theta (Hat R + Theta Hat Theta) Also Punkt s = 4 Punkt Theta sqrt (1 + Theta ^ 2) Bogenlänge s = 4 int_ (t_1) ^ (t_2 (1 + theta ^ 2) dot theta dt = 4 int - (- pi / 4) ^ (pi) sqrt (1 + theta ^ 2) d theta = 2 [theta² (theta ^ 2 + 1) + sinh ^ (- 1) theta] _ (- pi / 4) ^ (pi) Computerlösung. Siehe Youtube hie