
Antworten:
9 Zoll
Erläuterung:
Beginnen wir mit der Betrachtung des Umfangs (P) des Rechtecks.
Die Länge sei l und die Breite sei b.
Dann ist P = 21 + 2b = 30
Wir können einen gemeinsamen Faktor von 2: 2 (l + b) = 30 herausnehmen
beide Seiten durch 2 teilen: l + b = 15 b = 15 - l
Betrachten Sie nun die Fläche (A) des Rechtecks.
# A = lxxb = l (15 - l) = 15l - l ^ 2 # Der Grund für das Schreiben von b = 15 - l war, dass wir eine Gleichung hätten, die nur eine Variable enthält.
Jetzt müssen wir lösen:
# 15l - l ^ 2 = 54 # multiplizieren mit -1 und gleich Null.
daher
# l ^ 2 - 15l + 54 = 0 # Für den Faktor sind 2 Zahlen erforderlich, die sich mit 54 multiplizieren und mit -15 summieren.
daher Länge = 9 Zoll und Breite = 15-9 = 6 Zoll.
Die Länge eines Rechtecks beträgt 3,5 Zoll mehr als seine Breite. Der Umfang des Rechtecks beträgt 31 Zoll. Wie finden Sie die Länge und Breite des Rechtecks?

Länge = 9,5 ", Breite = 6" Beginnen Sie mit der Umfangsgleichung: P = 2l + 2w. Dann geben Sie an, welche Informationen wir kennen. Der Umfang beträgt 31 "und die Länge entspricht der Breite + 3,5". Dazu gilt: 31 = 2 (w + 3,5) + 2w, weil l = w + 3,5. Dann lösen wir nach w, indem wir alles durch 2 teilen. Wir bleiben dann bei 15.5 = w + 3.5 + w. Dann subtrahieren Sie 3,5 und kombinieren Sie die w, um zu erhalten: 12 = 2w. Schließlich dividiere noch mal durch 2, um w zu finden, und wir erhalten 6 = w. Dies sagt uns, dass die Breite 6 Zoll beträgt, die Hälfte des Problems.
Der Umfang eines Dreiecks beträgt 24 Zoll. Die längste Seite von 4 Zoll ist länger als die kürzeste Seite, und die kürzeste Seite ist drei Viertel der Länge der mittleren Seite. Wie finden Sie die Länge jeder Seite des Dreiecks?

Nun, dieses Problem ist einfach unmöglich. Wenn die längste Seite 4 Zoll ist, kann der Umfang eines Dreiecks nicht 24 Zoll betragen. Sie sagen, dass 4 + (etwas weniger als 4) + (etwas weniger als 4) = 24 ist, was unmöglich ist.
Der Umfang eines Dreiecks beträgt 29 mm. Die Länge der ersten Seite ist doppelt so lang wie die zweite Seite. Die Länge der dritten Seite ist 5 länger als die Länge der zweiten Seite. Wie finden Sie die Seitenlängen des Dreiecks?

S_1 = 12 s_2 = 6 s_3 = 11 Der Umfang eines Dreiecks ist die Summe der Längen aller seiner Seiten. In diesem Fall ist der Umfang 29 mm. Also für diesen Fall: s_1 + s_2 + s_3 = 29 Wenn wir also nach der Länge der Seiten suchen, übersetzen wir Aussagen in der gegebenen Form in eine Gleichungsform. "Die Länge der 1. Seite ist doppelt so lang wie die 2. Seite." Um dies zu lösen, weisen wir entweder s_1 oder s_2 eine Zufallsvariable zu. In diesem Beispiel würde x die Länge der zweiten Seite sein, um Brüche in meiner Gleichung zu vermeiden. also wissen wir das: s_1 = 2s_2 abe