Antworten:
Erläuterung:
Wenn eine Matrix
Zum Beispiel wenn
#M ((x), (y), (z)) = ((0), (0), (0)) #
dann:
# ((x), (y), (z)) = M ^ (-1) M ((x), (y), (z)) = M ^ (-1) ((0), (0), (0)) = ((0), (0), (0)) #
Also der Nullraum von
Der erste und der zweite Term einer geometrischen Sequenz sind jeweils der erste und der dritte Term einer linearen Sequenz. Der vierte Term der linearen Sequenz ist 10 und die Summe seiner ersten fünf Term ist 60. Finden Sie die ersten fünf Terme der linearen Sequenz?
{16, 14, 12, 10, 8} Eine typische geometrische Sequenz kann als c_0a, c_0a ^ 2, cdots, c_0a ^ k und eine typische arithmetische Sequenz als c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + dargestellt werden kDelta Mit c_0 a als erstem Element für die geometrische Sequenz haben wir {(c_0 a ^ 2 = c_0a + 2Delta -> "Erster und zweiter von GS sind der erste und dritte eines LS"), (c_0a + 3Delta = 10- > "Der vierte Term der linearen Sequenz ist 10"), (5c_0a + 10Delta = 60 -> "Die Summe der ersten fünf Term ist 60"):} Durch Auflösen von c_0, a, Delta erhalten wir c_0 = 64/3 a
Sei [(x_ (11), x_ (12)), (x_21, x_22)] als ein Objekt definiert, das als Matrix bezeichnet wird. Die Determinante einer Matrix ist definiert als [(x_ (11) xxx_ (22)) - (x_21, x_12)]. Wenn nun M [(- 1,2), (-3, -5)] und N = [(- 6,4), (2, -4)] ist, was ist die Determinante von M + N & MxxN?
Determinante von ist M + N = 69 und die von MXN = 200ko Man muss auch die Summe und das Produkt der Matrizen definieren. Es wird jedoch davon ausgegangen, dass sie genau so sind, wie sie in Lehrbüchern für die 2xx2-Matrix definiert sind. M + N = [(- 1,2), (- 3, -5)] + [(- 6,4), (2, -4)] = [(- 7,6), (- 1, -) 9)] Daher ist seine Determinante (-7xx-9) - (- 1xx6) = 63 + 6 = 69 MXN = [(((- 1) xx (-6) + 2xx2), ((- 1) xx4 + 2xx) (-4))), (((- 1) xx2 + (- 3) xx (-4)), ((- 3) xx4 + (- 5) xx (-4)))] = [(10, -12 ), (10,8)] Daher ist MXN = (10xx8 - (- 12) xx10) = 200
Produkt mit einer positiven Anzahl von zwei Ziffern und der Ziffer an seiner Stelle ist 189. Wenn die Ziffer an der Stelle der Zehnfachen die der Stelle an der Stelle der Einheit ist, welche Ziffer an der Stelle der Einheit?
3. Beachten Sie, dass die zweistelligen Nr. die zweite Bedingung (Bedingung) erfüllt sind, 21,42,63,84. Daraus schließen wir, da 63xx3 = 189, die zweistellige Nr. ist 63 und die gewünschte Stelle an Stelle der Einheit ist 3. Um das Problem methodisch zu lösen, nehmen Sie an, dass die Stelle von Zehn x ist und die der Einheit y. Dies bedeutet, dass die zweistellige Nr. ist 10x + y. Die Bedingung "1 ^ (st)". RArr (10x + y) y = 189. Die Bedingung "2 (nd)". RArr x = 2y. Einfügen von x = 2y in (10x + y) y = 189, {10 (2y) + y} = 189. :. 21y ^ 2 = 189 rArry ^ 2 = 189/21 = 9 rArry = + -