Antworten:
Dies nennt man ein Assoziatives Recht der Vermehrung.
Siehe den Beweis unten.
Erläuterung:
(1)
(2)
(3)
(4)
Beachten Sie, dass der endgültige Ausdruck für den Vektor in (2) mit dem endgültigen Ausdruck für den Vektor in (4) identisch ist. Es wird nur die Reihenfolge der Summation geändert.
Ende des Beweises
Der Graph von h (x) wird angezeigt. Das Diagramm scheint kontinuierlich zu sein, wo sich die Definition ändert. Zeigen Sie, dass h tatsächlich kontinuierlich ist, indem Sie die linken und rechten Grenzen finden und zeigen, dass die Definition der Kontinuität erfüllt ist.
Bitte beachten Sie die Erklärung. Um zu zeigen, dass h stetig ist, müssen wir seine Kontinuität bei x = 3 überprüfen. Wir wissen, dass h. bei x = 3, wenn und nur dann, wenn lim_ (x bis 3-) h (x) = h (3) = lim_ (x bis 3+) h (x) ............ ................... (ast). Als x bis 3, x lt 3:. h (x) = - x ^ 2 + 4x + 1. :. lim_ (x bis 3-) h (x) = lim_ (x bis 3 -) - x ^ 2 + 4x + 1 = - (3) ^ 2 + 4 (3) +1, rArr lim_ (x bis 3-) h (x) = 4 ............................................ .......... (ast ^ 1). In ähnlicher Weise ist lim_ (x zu 3+) h (x) = lim_ (x zu 3+) 4 (0,6) ^ (x-3) = 4 (0,6) ^ 0. rArr lim_
Sei f (x) = x-1. 1) Stellen Sie sicher, dass f (x) weder gerade noch ungerade ist. 2) Kann f (x) als Summe einer geraden und einer ungeraden Funktion geschrieben werden? a) Wenn ja, zeigen Sie eine Lösung. Gibt es mehr Lösungen? b) Falls nicht, beweisen Sie, dass dies unmöglich ist.
Sei f (x) = | x -1 |. Wenn f gerade wäre, dann wäre f (-x) für alle x gleich f (x). Wenn f ungerade wäre, dann wäre f (-x) für alle x -f (x). Beachten Sie, dass für x = 1 f (1) = | 0 | = 0 f (-1) = | -2 | = 2 Da 0 nicht gleich 2 oder -2 ist, ist f weder gerade noch ungerade. Könnte f als g (x) + h (x) geschrieben werden, wobei g gerade ist und h ungerade ist? Wenn das wahr wäre, dann g (x) + h (x) = | x - 1 |. Rufen Sie diese Anweisung auf 1. Ersetzen Sie x durch -x. g (-x) + h (-x) = | -x - 1 | Da g gerade ist und h ungerade ist, haben wir: g (x) - h (x) = | -x - 1 | Nennen Sie
Sei (ABC) ein beliebiges Dreieck, strecke (AC) bis D so, dass Bar (CD) bar (CB); strecken Sie auch den Stab (CB) in E, so dass der Stab (CE) bar (CA) ist. Segmente bar (DE) und bar (AB) treffen sich bei F. Zeigen Sie, dass (DFB isosceles?
Wie folgt Ref: Gegebene Abbildung "In" DeltaCBD, bar (CD) ~ = bar (CB) => / _ CBD = / _ CDB "Wieder in" DeltaABC und DeltaDEC bar (CE) ~ = bar (AC) -> "nach Konstruktion "bar (CD) ~ = bar (CB) ->" durch Konstruktion "" Und "/ _DCE =" vertikal gegenüberliegend "/ _BCA" Daher "DeltaABC ~ = DeltaDCE => / _ EDC = / _ ABC" Jetzt in "DeltaBDF, / _FBD = / _ ABC + / _ CBD = / _ EDC + / _ CDB = / _ EDB = / _ FDB "So" -Balken (FB) ~ = Balken (FD) => DeltaFBD "isosceles"