Antworten:
Erläuterung:
Wir haben eine Kettenregel, wir haben die Außenfunktion
und die innere Funktion
Kettenregel leitet beide Funktionen ab und multipliziert dann die Ableitungen
so
Vielfach Derivate
Was ist die erste Ableitung und die zweite Ableitung von 4x ^ (1/3) + 2x ^ (4/3)?
(dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) (die erste Ableitung) (d ^ 2 y) / (dt ^ 2) ) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(die zweite Ableitung) y = 4x ^ (1/3) + 2x ^ (4/3) (dy) / (dx) = 1/3 * 4 * x ^ ((1/3-1)) + 4/3 * 2x ^ ((4 / 3-1)) (dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(die erste Ableitung)" (d ^ 2 y) / (dt ^ 2) = - 2/3 * 4/3 * x ^ ((2/3-1)) + 8/3 · 1/3 · x ^ ((1/3-1)) (d ^ 2y) / (dt ^ 2) = - 8/9 * x ^ ((- 5/3)) + 8/9 * x ^ ((- 2/3) (d ^ 2y) / (dt ^ 2) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) (die zweite Ableitung)
Was ist die zweite Ableitung von x / (x-1) und die erste Ableitung von 2 / x?
Frage 1 Wenn f (x) = (g (x)) / (h (x)), dann gilt nach der Quotientenregel f '(x) = (g' (x) * h (x) - g (x) * h '(x)) / ((g (x)) ^ 2) Wenn also f (x) = x / (x-1), dann ist die erste Ableitung f' (x) = ((1) (x-1) - (x) (1)) / x ^ 2 = -1 / x ^ 2 = - x ^ (- 2) und die zweite Ableitung ist f '' (x) = 2x ^ -3 Frage 2 Wenn f (x) = 2 / x Dies kann als f (x) = 2x ^ -1 umgeschrieben werden und unter Verwendung von Standardverfahren für die Ableitung f '(x) = -2x ^ -2 oder wenn Sie f' (x) = - bevorzugen 2 / x ^ 2
Wie verwendet man die Grenzwertdefinition der Ableitung, um die Ableitung von y = -4x-2 zu finden?
-4 Die Ableitung wird wie folgt definiert: lim (h-> 0) (f (x + h) -f (x)) / h Wenden wir die obige Formel auf die gegebene Funktion an: lim (h-> 0) (f (x + h) - f (x)) / h = lim (h -> 0) (- 4 (x + h) -2 - (- 4x-2)) / h = lim (h -> 0 ) (- 4x - 4h - 2 + 4x + 2) / h = lim (h -> 0) ((- 4h) / h) Vereinfachung durch h = lim (h -> 0) (- 4) = -4