Antworten:
Ausser wenn
Erläuterung:
Schauen wir uns zuerst den Zähler und den Nenner getrennt an.
So
Wie vereinfacht man [1 + tan ^ 2x] / [csc ^ 2x]?
Tan ^ 2x Es ist bekannt, dass 1 + tan ^ 2x- = sec ^ 2x Wir können dies anwenden, um zu erhalten: sec ^ 2x / csc ^ 2x = (1 / cos ^ 2x) / (1 / sin ^ 2x) = sin ^ 2x / cos ^ 2x = tan ^ 2x
Wie drückt man f (theta) = sin ^ 2 (theta) + 3cot ^ 2 (theta) -3csc ^ 2 theta aus, wenn man die nichtexponentiellen trigonometrischen Funktionen berücksichtigt?
Siehe unten f (theta) = 3sin ^ 2theta + 3cot ^ 2theta-3csc ^ 2theta = 3sin ^ 2theta + 3cot ^ 2theta-3csc ^ 2theta = 3sin ^ 2theta + 3 (csc ^ 2theta-1) -3csc ^ 2theta = 3sin ^ 2theta + annullieren (3csc ^ 2theta) -cancel3csc ^ 2theta-3 = 3sin ^ 2theta-3 = -3 (1-sin ^ 2theta) = -3cos ^ 2theta
Wie vereinfacht man (cot (theta)) / (csc (theta) - sin (theta))?
= (costheta / sintheta) / (1 / sintheta - sin theta) = (costheta / sintheta) / (1 / sintheta - sin ^ 2 theta / sintheta) = (costheta / sintheta) / ((1 - sin ^ 2 theta) / sintheta = (costheta / sintheta) / (cos ^ 2theta / sintheta) = costheta / sintheta xx sintheta / cos ^ 2theta = 1 / costheta = sectheta Hoffentlich hilft das!