Wie vereinfacht man (cot (theta)) / (csc (theta) - sin (theta))?

Wie vereinfacht man (cot (theta)) / (csc (theta) - sin (theta))?
Anonim

# = (costheta / sintheta) / (1 / sintheta - sin theta) #

# = (costheta / sintheta) / (1 / sintheta - sin ^ 2theta / sintheta) #

# = (costheta / sintheta) / ((1 - sin ^ 2theta) / sintheta #

# = (costheta / sintheta) / (cos ^ 2theta / sintheta) #

# = costheta / sintheta xx sintheta / cos ^ 2theta #

# = 1 / Costheta #

# = sectheta #

Hoffentlich hilft das!

Antworten:

#sec theta #

Erläuterung:

Schon seit #cot theta = cos theta / sin theta und csc theta = 1 / sin theta #wird der Ausdruck zu:

# (cos theta / sin theta) / (1 / sintheta-sin theta) #

das ist

# (cos theta / sin theta) / ((1-sin ^ 2 theta) / sin theta) #;

dann seit # 1-sin ^ 2 theta = cos ^ 2 theta #wird der Ausdruck zu:

# (cos theta / aufheben sin theta) / (cos ^ 2 theta / aufheben sin theta) #

# = 1 / cos theta = sec theta #