Antworten:
Wir werden gebeten zu zeigen
Erläuterung:
Lassen Sie uns reparieren, was ich vermute, ist ein Tippfehler und sagen
Der Bereich von Sinus ist
In rechteckigen Koordinaten
Zeigen Sie, dass cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2 ist. Ich bin etwas verwirrt, wenn ich Cos²4π / 10 = cos² (π-6π / 10) und cos²9π / 10 = cos² (π-π / 10) mache, es wird negativ als cos (180 ° -theta) = - costheta in der zweite Quadrant. Wie überprüfe ich die Frage?
Siehe unten. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4 pi) / 10)] = 2 * 1 = 2 = RHS
Das Gewicht eines Objekts auf dem Mond. variiert direkt mit dem Gewicht der Objekte auf der Erde. Ein 90-Pfund-Objekt auf der Erde wiegt 15 Pfund auf dem Mond. Wie viel wiegt es auf dem Mond, wenn ein Objekt auf der Erde 156 Pfund wiegt?
26 Pfund Das Gewicht des ersten Objekts auf der Erde beträgt 90 Pfund, aber auf dem Mond 15 Pfund. Dies gibt uns ein Verhältnis zwischen den relativen Gravitationsfeldstärken der Erde und des Mondes, W_M / (W_E), was das Verhältnis (15/90) = (1/6) von ungefähr 0,167 ergibt. Mit anderen Worten, Ihr Gewicht auf dem Mond ist 1/6 dessen, was es auf der Erde gibt. So multiplizieren wir die Masse des schwereren Objekts (algebraisch) wie folgt: (1/6) = (x) / (156) (x = Masse auf dem Mond) x = (156) mal (1/6) x = 26 Das Gewicht des Objekts auf dem Mond beträgt also 26 Pfund.
Sei A (x_a, y_a) und B (x_b, y_b) zwei Punkte in der Ebene und sei P (x, y) der Punkt, der den Strich (AB) im Verhältnis k: 1 teilt, wobei k> 0 ist. Zeigen Sie, dass x = (x_a + kx_b) / (1 + k) und y = (y_a + ky_b) / (1 + k)?
Siehe unten den Beweis. Beginnen wir mit der Berechnung von vec (AB) und vec (AP). Wir beginnen mit x vec (AB) / vec (AP) = (k + 1) / k (x_b-x_a) / (x-x_a) = (k + 1) / k Multiplizieren und Umordnen (x_b-x_a) (k) = (x-x_a) (k + 1) Lösen für x (k + 1) x = kx_b-kx_a + kx_a + x_a (k + 1) ) x = x_a + kx_b x = (x_a + kx_b) / (k + 1) In ähnlicher Weise gilt für y (y_b-y_a) / (y-y_a) = (k + 1) / k ky_b-ky_a = y (k +1) - (k + 1) y_a (k + 1) y = ky_b-ky_a + ky_a + y_a y = (y_a + ky_b) / (k + 1)