Antworten:
Siehe Beweis unten
Erläuterung:
Beginnen wir mit dem Rechnen
Wir beginnen mit dem
Multiplizieren und Neuanordnen
Lösen für
Ähnlich mit dem
An der Hannover High School gibt es 950 Schüler. Das Verhältnis der Anzahl der Erstsemester zu allen Schülern beträgt 3:10. Das Verhältnis der Anzahl der Schüler zu allen Schülern beträgt 1: 2. Wie ist das Verhältnis zwischen der Anzahl der Erstsemester und der zweiten Klasse?
3: 5 Sie wollen zuerst herausfinden, wie viele Studienanfänger es in der High School gibt. Da das Verhältnis von Erstsemester zu allen Schülern 3:10 beträgt, machen Neulinge 30% aller 950 Schüler aus, was bedeutet, dass es 950 (0,3) = 285 Erstsemester gibt. Das Verhältnis der Anzahl der Schülerinnen und Schüler zu allen Schülern beträgt 1: 2, was bedeutet, dass die Schülerinnen und Schüler die Hälfte aller Schüler ausmachen. Also 950 (.5) = 475 Sophomores. Da Sie nach dem Verhältnis von Anzahl zu Studienanfängern zu Zweitstudenten suchen, sollt
Sei ABC ~ XYZ. Das Verhältnis ihrer Umfänge beträgt 11/5. Wie ist das Ähnlichkeitsverhältnis der Seiten? Wie ist das Verhältnis ihrer Flächen?
11/5 und 121/25 Da der Umfang eine Länge ist, beträgt das Verhältnis der Seiten zwischen den beiden Dreiecken ebenfalls 11/5. In ähnlichen Figuren stehen ihre Flächen jedoch in demselben Verhältnis wie die Quadrate der Seiten. Das Verhältnis beträgt daher 121/25
Sei A (-3,5) und B sei (5, -10)). Finden Sie: (1) die Länge der Segmentstange (AB) (2) den Mittelpunkt P der Stange (AB) (3) den Punkt Q, der die Stange (AB) im Verhältnis 2: 5 teilt.
(1) die Länge des Segmentbalkens (AB) beträgt 17 (2) Der Mittelpunkt des Balkens (AB) beträgt (1, -7 1/2). (3) Die Koordinaten des Punktes Q, der den Balken (AB) in teilt Verhältnis 2: 5 sind (-5 / 7,5 / 7) Wenn wir zwei Punkte A (x_1, y_1) und B (x_2, y_2) haben, wird die Länge des Balkens (AB) angegeben, dh der Abstand zwischen ihnen wird durch sqrt (( x_2-x_1) ^ 2 + (x_2-x_1) ^ 2) und die Koordinaten des Punktes P, der die Segmentstange (AB) teilt, die diese beiden Punkte im Verhältnis l: m verbindet, sind ((lx_2 + mx_1) / (l +) m), (lx_2 + mx_1) / (l + m)) und als geteiltes Segment im Verh