Antworten:
Erläuterung:
Vor allem, wenn der Umfang eines regulären Sechsecks gemessen wird
Um die Fläche zu berechnen, können Sie die Figur in gleichseitige Dreiecke wie folgt unterteilen.
Die Seite gegeben
In unserem Fall
Der Umfang eines regulären Sechsecks beträgt 48 Zoll. Wie groß ist die Anzahl der Quadratzentimeter im positiven Unterschied zwischen den Bereichen der umschriebenen und den eingeschriebenen Kreise des Sechsecks? Drücken Sie Ihre Antwort in Form von pi aus.
Farbe (blau) ("Diff. im Bereich zwischen umschriebenen und eingeschriebenen Kreisen") Farbe (grün) (A_d = pi R ^ 2 - pi r ^ 2 = 36 pi - 27 pi = 9pi "Quadratzoll") Umfang des regulären Sechsecks P = 48 "inch" Sechseckseite a = P / 6 = 48/6 = 6 "inch" Ein regelmäßiges Sechseck besteht aus 6 gleichseitigen Dreiecken der Seite a. Eingeschriebener Kreis: Radius r = a / (2 tan Theta), Theta = 60 / 2 = 30 ^ @ r = 6 / (2 tan (30)) = 6 / (2 (1 / sqrt3)) = 3 sqrt 3 "inch" Fläche des eingeschriebenen Kreises A_r = pi r ^ 2 = pi ( 3 sqrt3) ^ 2 = 27 pi "sq
Was ist die Fläche eines regulären Sechsecks mit einem 7,5 Zoll großen Apothem? Was ist ihr Umfang?
Ein Sechseck kann in 6 gleichseitige Dreiecke aufgeteilt werden. Wenn eines dieser Dreiecke eine Höhe von 7,5 Zoll hat, dann (unter Verwendung der Eigenschaften von 30-60-90 Dreiecken ist eine Seite des Dreiecks (2 * 7,5) / sqrt3 = 15 / sqrt3 = (15sqrt3) / 3. Da Die Fläche eines Dreiecks ist (1/2) * b * h, dann ist die Fläche des Dreiecks (1/2) (15sqrt3 / 3) * (7,5) oder (112.5sqrt3) / 6. Es gibt 6 dieser Dreiecke Dies ist das Sechseck, also beträgt die Fläche des Sechsecks 112,5 * sqrt 3. Für den Umfang haben Sie wiederum festgestellt, dass eine Seite des Dreiecks (15sqrt3) / 3 ist. Dies ist
Wie groß ist der Umfang eines 15-Zoll-Kreises, wenn der Durchmesser eines Kreises direkt proportional zu seinem Radius ist und ein Kreis mit 2 Zoll Durchmesser einen Umfang von ungefähr 6,28 Zoll hat?
Ich glaube, der erste Teil der Frage sollte sagen, dass der Umfang eines Kreises direkt proportional zu seinem Durchmesser ist. Diese Beziehung ist, wie wir Pi bekommen. Wir kennen den Durchmesser und den Umfang des kleineren Kreises "2 in" bzw. "6,28 in". Um das Verhältnis zwischen Umfang und Durchmesser zu bestimmen, dividieren wir den Umfang durch den Durchmesser "6.28 in" / "2 in" = "3.14", was sehr nach pi aussieht. Nun, da wir den Anteil kennen, können wir den Durchmesser des größeren Kreises multiplizieren, um den Umfang des Kreises zu berechnen.