Wie berechnet man sin (cos ^ -1 (5/13) + tan ^ -1 (3/4))?

Wie berechnet man sin (cos ^ -1 (5/13) + tan ^ -1 (3/4))?
Anonim

Antworten:

#sin (cos ^ (-1) (5/13) + tan ^ (-1) (3/4)) = 63/65 #

Erläuterung:

Lassen #cos ^ (- 1) (5/13) = x # dann

# rarrcosx = 5/13 #

# rarrsinx = sqrt (1-cos ^ 2x) = sqrt (1- (5/13) ^ 2) = 12/13 #

# rarrx = sin ^ (- 1) (12/13) = cos ^ (- 1) (5/13) #

Lass auch #tan ^ (- 1) (3/4) = y # dann

# rarrtany = 3/4 #

# rarrsiny = 1 / cscy = 1 / sqrt (1 + cot ^ 2y) = 1 / sqrt (1+ (4/3) ^ 2) = 3/5 #

# rarry = tan ^ (- 1) (3/4) = sin ^ (- 1) (3/5) #

#rarrcos ^ (- 1) (5/13) + tan ^ (- 1) (3/4) #

# = sin ^ (- 1) (12/13) + sin ^ (- 1) (3/5) #

# = sin ^ (- 1) (12/13 * sqrt (1- (3/5) ^ 2) + 3/5 * sqrt (1- (12/13) ^ 2)) #

# = sin ^ (-1) (12/13 * 4/5 + 3/5 * 5/13) = 63/65 #

Jetzt, #sin (cos ^ (- 1) (5/13) + tan ^ (- 1) (3/4)) #

# = sin (sin ^ (- 1) (63/65)) = 63/65 #