Antworten:
Sehen Sie unten einen Lösungsprozess:
Erläuterung:
Die Formel zum Ermitteln des Mittelpunkts eines Liniensegments ergibt die beiden Endpunkte:
Woher
Wenn Sie die Werte aus den Punkten des Problems ersetzen und den Mittelpunkt berechnen, erhalten Sie:
Antworten:
Erläuterung:
# "der Mittelpunkt ist der Durchschnitt der Koordinaten von" #
# "Koordinaten der Endpunkte" #
#rArr 1/2 (2-1), 1/2 (1 + 4) = (1 / 2,5 / 2) #
Die Endpunkte des Liniensegments PQ sind A (1,3) und Q (7, 7). Was ist der Mittelpunkt des Liniensegments PQ?
Die Koordinatenänderung von einem Ende zum Mittelpunkt ist die Hälfte der Koordinatenänderung von einem Ende zum anderen. Um von P nach Q zu gehen, nehmen die x-Koordinate um 6 und die y-Koordinate um 4 zu. Wenn Sie von P zum Mittelpunkt gehen, wird die x-Koordinate um 3 und die y-Koordinate um 2 zunehmen. das ist der Punkt (4, 5)
Die Kerndichte eines Planeten ist rho_1 und die der äußeren Hülle ist rho_2. Der Radius des Kerns ist R und der des Planeten 2R. Das Gravitationsfeld an der äußeren Oberfläche des Planeten ist das gleiche wie an der Oberfläche des Kerns, was das Verhältnis rho / rho_2 ist. ?
3 Nehmen wir an, die Masse des Kerns des Planeten ist m und die der äußeren Schale ist m '. Das Feld auf der Oberfläche des Kerns ist (Gm) / R ^ 2. Auf der Oberfläche der Schale wird es (G (m + m ')) / (2R) ^ 2 Gegebenermaßen sind beide gleich, also (Gm) / R ^ 2 = (G (m + m')) / (2R) ^ 2 oder 4m = m + m 'oder m' = 3m Nun ist m = 4/3 pi R ^ 3 rho_1 (Masse = Volumen * Dichte) und m '= 4/3 pi ((2R) ^ 3 -R ^ 3) rho_2 = 4 / 3 pi 7R ^ 3 rho_2 Daher ist 3m = 3 (4/3 pi R ^ 3 rho_1) = m '= 4/3 pi 7R ^ 3 rho_2 Also ist rho_1 = 7/3 rho_2 oder (rho_1) / (rho_1) / ) = 7/3
Was ist der Mittelpunkt des Liniensegments, das die Punkte (7, 4) und (-8, 7) verbindet?
(-1/2,11/2) ((7-8)/2;(4+7)/2)=(-1/2,11/2)