Antworten:
Orthozentrum:
Erläuterung:
Das Orthozentrum ist der Schnittpunkt für alle Höhen des Dreiecks. Wenn wir die drei Koordinaten eines Dreiecks erhalten, können wir Gleichungen für zwei Höhenlagen finden und dann herausfinden, wo sie sich schneiden, um das Orthozentrum zu erhalten.
Lass uns anrufen
Hinweis: Die Steigung der Höhe ist senkrecht zur Steigung der Linien. Die Höhe berührt eine Linie und den Punkt, der außerhalb der Linie liegt.
Lasst uns zuerst anpacken
Steigung:
Punkt:
Gleichung:
Dann lass uns finden
Steigung:
Punkt:
Gleichung:
Jetzt setzen wir einfach die Gleichungen zueinander und die Lösung wäre das Orthozentrum.
Stecken Sie die
Orthozentrum:
Was ist das Orthozentrum eines Dreiecks mit Ecken bei (1, 2), (5, 6) und (4, 6) #?
Das Orthozentrum des Dreiecks ist: (1,9) Sei DreieckABC das Dreieck mit Ecken bei A (1,2), B (5,6) und C (4,6). Let, Balken (AL), Balken (BM) und Balken (CN) sind die Höhen auf Seitenbalken (BC), Balken (AC) und Balken (AB). Sei (x, y) der Schnittpunkt von drei Höhen. Steigung des Strichs (AB) = (6-2) / (5-1) = 1 => Steigung des Strichs (CN) = - 1 [:. height] und bar (CN) durchläuft C (4,6) Also, equn. von Takt (CN) ist: y-6 = -1 (x-4) dh Farbe (rot) (x + y = 10 .... bis (1)) Nun ist die Steigung des Strichs (AC) = (6-2) ) / (4-1) = 4/3 => Steigung des Balkens (BM) = - 3/4 [: Höhe] und des Balkens
Was ist das Orthozentrum eines Dreiecks mit Ecken bei (1, 3), (5, 7) und (2, 3) #?
Das Orthozentrum des Dreiecks ABC ist H (5,0). Das Dreieck sei ABC mit Ecken bei A (1,3), B (5,7) und C (2,3). also die Steigung von "Linie" (AB) = (7-3) / (5-1) = 4/4 = 1 Es sei bar (CN) _ | _bar (AB):. Die Steigung der "Linie" CN = -1 / 1 = -1 und durchläuft C (2,3). : .Die equn. von "Linie" CN ist: y-3 = -1 (x-2) => y-3 = -x + 2 dh x + y = 5 ... bis (1) Nun ist die Steigung von "Linie" (BC) = (7-3) / (5-2) = 4/3 Es sei bar (AM) _ | _bar (BC):. Die Steigung der "Linie" AM = -1 / (4/3) = - 3/4 und durchläuft A (1,3). : .Die equn. von "Linie" AM ist:
Was ist das Orthozentrum eines Dreiecks mit Ecken bei (1, 3), (5, 7) und (9, 8) #?
(-10 / 3,61 / 3) Wiederholen der Punkte: A (1,3) B (5,7) C (9,8) Das Orthozentrum eines Dreiecks ist der Punkt, an dem die Höhenlinien relativ zu jeder Seite liegen (geht durch den gegenüberliegenden Scheitelpunkt) trifft sich. Wir brauchen also nur die Gleichungen von 2 Zeilen. Die Steigung einer Linie ist k = (Delta y) / (Delta x) und die Steigung der Linie senkrecht zu der ersten ist p = -1 / k (wenn k! = 0). AB k_1 = (7-3) / (5-1) = 4/4 = 1 => p_1 = -1 BC k = (8-7) / (9-5) = 1/4 => p_2 = -4 Gleichung der Linie (durch C), in der die Höhe senkrecht zu AB (y-y_C) = p (x-x_C) => (y-8) = -1 (x-9) =