Antworten:
Erläuterung:
Wiederholen der Punkte:
Das Orthozentrum eines Dreiecks ist der Punkt, an dem sich die Höhenlinien relativ zu jeder Seite (durch den gegenüberliegenden Scheitelpunkt) treffen. Wir brauchen also nur die Gleichungen von 2 Zeilen.
Die Steigung einer Linie ist
Liniengleichung (Durchlauf)
Liniengleichung (durchlaufend)
Kombination der Gleichungen 1 und 2
# -> y = 10/3 + 17 = (10 + 51) / 3 # =># y = 61/3 #
Also das Orthozentrum
Was ist das Orthozentrum eines Dreiecks mit Ecken bei (1, 2), (5, 6) und (4, 6) #?
Das Orthozentrum des Dreiecks ist: (1,9) Sei DreieckABC das Dreieck mit Ecken bei A (1,2), B (5,6) und C (4,6). Let, Balken (AL), Balken (BM) und Balken (CN) sind die Höhen auf Seitenbalken (BC), Balken (AC) und Balken (AB). Sei (x, y) der Schnittpunkt von drei Höhen. Steigung des Strichs (AB) = (6-2) / (5-1) = 1 => Steigung des Strichs (CN) = - 1 [:. height] und bar (CN) durchläuft C (4,6) Also, equn. von Takt (CN) ist: y-6 = -1 (x-4) dh Farbe (rot) (x + y = 10 .... bis (1)) Nun ist die Steigung des Strichs (AC) = (6-2) ) / (4-1) = 4/3 => Steigung des Balkens (BM) = - 3/4 [: Höhe] und des Balkens
Was ist das Orthozentrum eines Dreiecks mit Ecken bei (1, 3), (5, 7) und (2, 3) #?
Das Orthozentrum des Dreiecks ABC ist H (5,0). Das Dreieck sei ABC mit Ecken bei A (1,3), B (5,7) und C (2,3). also die Steigung von "Linie" (AB) = (7-3) / (5-1) = 4/4 = 1 Es sei bar (CN) _ | _bar (AB):. Die Steigung der "Linie" CN = -1 / 1 = -1 und durchläuft C (2,3). : .Die equn. von "Linie" CN ist: y-3 = -1 (x-2) => y-3 = -x + 2 dh x + y = 5 ... bis (1) Nun ist die Steigung von "Linie" (BC) = (7-3) / (5-2) = 4/3 Es sei bar (AM) _ | _bar (BC):. Die Steigung der "Linie" AM = -1 / (4/3) = - 3/4 und durchläuft A (1,3). : .Die equn. von "Linie" AM ist:
Was ist das Orthozentrum eines Dreiecks mit Ecken bei (1, 3), (6, 2) und (5, 4)?
(x, y) = (47/9, 46/9) Sei: A (1, 3), B (6, 2) und C (5, 4) die Eckpunkte des Dreiecks ABC: Steigung einer Linie durch Punkte : (x_1, y_1), (x_2, y_2): m = (y_2-y_1) / (x_2-x_1) Steigung von AB: = (2-3) / (6-1) = - 1/5 Steigung der Senkrechten Linie ist 5. Gleichung der Höhe von C bis AB: y-y_1 = m (x-x_1) => m = 5, C (5,4): y-4 = 5 (x-5) y = 5x- 21 Steigung von BC: = (4-2) / (5-6) = - 2 Die Steigung der senkrechten Linie beträgt 1/2. Gleichung der Höhe von A nach BC: y-3 = 1/2 (x-1) y = (1/2) x + 5/2 Der Schnittpunkt der Höhen, die y entsprechen: 5x-21 = (1/2) x + 5/2 10x-42 = x + 5 9x = 47 x = 47/9