Ich glaube, Sie meinen entweder "Sie werfen eine Münze dreimal" oder "Sie werfen drei Münzen".
X wird als Zufallsvariable bezeichnet, denn bevor wir die Münzen umdrehen, wissen wir nicht, wie viele Köpfe wir bekommen werden. Aber wir können etwas über alles sagen möglich Werte für X.
Da jeder Umschlag einer Münze unabhängig von anderen Umschlägen ist, sind die möglichen Werte der Zufallsvariablen X {0, 1, 2, 3}, d. H.Sie könnten 0 Köpfe oder 1 Kopf oder 2 Köpfe oder 3 Köpfe bekommen.
Versuchen Sie es mit einem anderen, bei dem Sie über vier Würfel eines Würfels nachdenken. Die Zufallsvariable Y soll die Anzahl von 6 in vier Würfeln eines Würfels bedeuten. Was sind alle möglichen Werte der Zufallsvariablen Y?
Penny schaute in ihren Kleiderschrank. Die Anzahl der Kleider, die sie besaß, war 18 mehr als doppelt so hoch wie die Anzahl der Anzüge. Insgesamt betrug die Anzahl der Kleider und die Anzahl der Anzüge 51. Wie viele davon besaßen sie?
Penny besitzt 40 Kleider und 11 Anzüge. Lasse d und s die Anzahl der Kleider bzw. Anzüge sein. Uns wird gesagt, dass die Anzahl der Kleider 18 mehr als doppelt so hoch ist wie die Anzahl der Anzüge. Daher gilt: d = 2s + 18 (1) Es wird auch gesagt, dass die Gesamtzahl der Kleider und Anzüge 51 beträgt. Daher ist d + s = 51 (2) From (2): d = 51-s Ersetzen von d in (1) ) oben: 51-s = 2s + 18 3s = 33s = 11 Anstelle von s in (2) oben: d = 51-11 d = 40 Die Anzahl der Kleider (d) beträgt also 40 und die Anzahl der Anzüge (s ) 11 ist.
Sie haben drei Würfel: einen roten (R), einen grünen (G) und einen blauen (B). Wenn alle drei Würfel gleichzeitig gewürfelt werden, wie berechnet man die Wahrscheinlichkeit der folgenden Ergebnisse: die gleiche Anzahl auf allen Würfeln?
Die Chance, dass die gleiche Anzahl auf allen 3 Würfeln liegt, beträgt 1/36. Mit einem Würfel haben wir 6 Ergebnisse. Durch Hinzufügen eines weiteren Ergebnisses haben wir nun 6 Ergebnisse für jedes Ergebnis des alten Würfels oder 6 ^ 2 = 36. Das Gleiche geschieht mit dem dritten und bringt es auf 6 ^ 3 = 216 die gleiche Nummer: 1 1 1 2 2 3 3 3 4 4 4 5 5 5 und 6 6 6 Die Chance ist also 6/216 oder 1/36.
Sie haben drei Würfel: einen roten (R), einen grünen (G) und einen blauen (B). Wenn alle drei Würfel gleichzeitig gewürfelt werden, wie berechnet man die Wahrscheinlichkeit der folgenden Ergebnisse: eine andere Anzahl bei allen Würfeln?
5/9 Die Wahrscheinlichkeit, dass sich die Zahl auf dem grünen Würfel von der Zahl auf dem roten Würfel unterscheidet, beträgt 5/6. In den Fällen, in denen der rote und der grüne Würfel unterschiedliche Zahlen haben, ist die Wahrscheinlichkeit, dass der blaue Würfel eine andere Zahl als die anderen beiden hat, 4/6 = 2/3. Daher ist die Wahrscheinlichkeit, dass sich alle drei Zahlen unterscheiden, 5/6 * 2/3 = 10/18 = 5/9. Farbe (weiß) () Alternative Methode Es gibt insgesamt 6 ^ 3 = 216 verschiedene mögliche Rohergebnisse beim Würfeln von 3 Würfeln. Es gibt 6 Mö