Antworten:
Erläuterung:
Lass die zwei Zahlen sein
einstellen
Die Frage in ihre Bestandteile zerlegen:
Die Summe zweier Zahlen ist 24:
Wenn 4 weniger als:
6 mal:
die kleinere Zahl:
gleich:
5 mehr als:
dreimal:
die größere Anzahl:
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
'~~~~~~~~~~~~~~~~~~~~~~~~~
Von (2):
Ersatz für
Sammeln wie Begriffe
Beide Seiten durch 9 teilen
'~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ersetzen von Gleichung (4) in Gleichung (2)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Die größere Zahl von zwei ist 10 weniger als das Doppelte der kleineren Zahl. Wenn die Summe der beiden Zahlen 38 ist, wie lauten dann die beiden Zahlen?
Die kleinste Zahl ist 16 und die größte ist 22. Wenn x die kleinste der beiden Zahlen ist, kann das Problem mit der folgenden Gleichung zusammengefasst werden: (2x-10) + x = 38 rightarrow 3x-10 = 38 rightarrow 3x = 48 rightarrow x = 48/3 = 16 Daher kleinste Zahl = 16 größte Zahl = 38-16 = 22
Die Summe aus drei Zahlen ist 4. Wenn die erste Zahl verdoppelt und die dritte verdreifacht wird, dann ist die Summe zwei weniger als die zweite. Vier mehr als die erste, die der dritten hinzugefügt wurde, sind zwei mehr als die zweite. Finde die Zahlen?
1. = 2, 2. = 3, 3. = -1 Erstellen Sie die drei Gleichungen: Sei 1. = x, 2. = y und die 3. = z. EQ. 1: x + y + z = 4 EQ. 2: 2x + 3z + 2 = y "=> 2x - y + 3z = -2 EQ. 3: x + 4 + z -2 = y "" => x - y + z = -2 Beseitigen Sie die Variable y: EQ1. + EQ. 2: 3x + 4z = 2 EQ. 1 + EQ. 3: 2x + 2z = 2 Lösen Sie für x, indem Sie die Variable z durch Multiplizieren des EQ eliminieren. 1 + EQ. 3 von -2 und zum EQ addieren. 1 + EQ. 2: (-2) (EQ. 1 + EQ. 3): -4x - 4z = -4 3x + 4z = 2 ul (-4x - 4z = -4) -x = -2 > x = 2 Lösen Sie für z, indem Sie x in den EQ setzen. 2 & EQ. 3: EQ. 2 mit x: 4 - y +
Die Summe zweier aufeinanderfolgender Zahlen ist 77. Die Differenz zwischen der Hälfte der kleineren und einem Drittel der größeren Zahl ist 6. Wenn x die kleinere Zahl ist und y die größere Zahl ist, stellen die beiden Gleichungen die Summe und die Differenz dar die Zahlen?
X + y = 77 1 / 2x-1 / 3y = 6 Wenn Sie die Zahlen wissen wollen, lesen Sie weiter: x = 38 y = 39