Wie groß ist der Umfang eines 15-Zoll-Kreises, wenn der Durchmesser eines Kreises direkt proportional zu seinem Radius ist und ein Kreis mit 2 Zoll Durchmesser einen Umfang von ungefähr 6,28 Zoll hat?
Ich glaube, der erste Teil der Frage sollte sagen, dass der Umfang eines Kreises direkt proportional zu seinem Durchmesser ist. Diese Beziehung ist, wie wir Pi bekommen. Wir kennen den Durchmesser und den Umfang des kleineren Kreises "2 in" bzw. "6,28 in". Um das Verhältnis zwischen Umfang und Durchmesser zu bestimmen, dividieren wir den Umfang durch den Durchmesser "6.28 in" / "2 in" = "3.14", was sehr nach pi aussieht. Nun, da wir den Anteil kennen, können wir den Durchmesser des größeren Kreises multiplizieren, um den Umfang des Kreises zu berechnen.
Sie erhalten einen Kreis B, dessen Mittelpunkt (4, 3) ist, und einen Punkt auf (10, 3) und einen anderen Kreis C, dessen Mittelpunkt (-3, -5) ist, und ein Punkt auf diesem Kreis ist (1, -5). . Wie ist das Verhältnis von Kreis B zu Kreis C?
3: 2 "oder" 3/2 "benötigen wir zur Berechnung der Radien der Kreise und vergleichen" "den Radius ist der Abstand vom Zentrum zum Punkt" "auf dem Kreis" "Zentrum von B" = (4,3) ) "und Punkt ist" = (10,3) ", da die y-Koordinaten beide 3 sind, dann ist der Radius" "die Differenz in den x-Koordinaten" rArr "Radius von B" = 10-4 = 6 "Zentrum von C = (- 3, -5) und Punkt ist = (1, -5) y-Koordinaten sind beide - 5 rArr-Radius von C = 1 - (- 3) = 4 Verhältnis = (Farbe (rot) "radius_B") / (Farbe (rot) "radius_C&quo
Kreis A hat einen Radius von 2 und einen Mittelpunkt von (6, 5). Kreis B hat einen Radius von 3 und einen Mittelpunkt von (2, 4). Wenn der Kreis B mit <1, 1> übersetzt wird, überlappt er den Kreis A? Wenn nicht, wie groß ist der Mindestabstand zwischen den Punkten in beiden Kreisen?
"Kreise überlappen"> "wir müssen hier den Abstand (d)" "zwischen den Zentren mit der Summe der Radien vergleichen." • "Wenn die Summe der Radien"> d "dann überlappen sich die Kreise" • ", wenn die Summe aus Radien "<d", dann keine Überlappung "" vor der Berechnung von d. Wir müssen das neue Zentrum "" von B nach der gegebenen Übersetzung "" unter der Übersetzung "<1,1> (2,4) in (2 + 1) finden. 4 + 1) bis (3,5) larrcolor (rot) "neues Zentrum von B" "um d zu bere