Antworten:
Der maximale Umfang beträgt:
Erläuterung:
Wann immer es möglich ist, zeichnen Sie ein Diagramm. Es hilft zu klären, womit Sie es zu tun haben.
Beachten Sie, dass ich die Eckpunkte mit Großbuchstaben und die Seiten mit Kleinbuchstaben für den entgegengesetzten Winkel markiert habe.
Wenn wir den Wert 2 auf die kleinste Länge setzen, ist die Summe der Seiten das Maximum.
Verwenden der Sinusregel
Ordnen Sie diese mit dem kleinsten Sinuswert auf der linken Seite
So zur Seite
einstellen
Der maximale Umfang beträgt also:
Zwei Ecken eines Dreiecks haben Winkel von (2 pi) / 3 und (pi) / 4. Wenn eine Seite des Dreiecks eine Länge von 12 hat, was ist der längste mögliche Umfang des Dreiecks?
Der längste mögliche Umfang beträgt 12 + 40,155 + 32,786 = 84,941. Da zwei Winkel (2 pi) / 3 und pi / 4 sind, ist der dritte Winkel pi-pi / 8-pi / 6 = (12 pi-8 pi-3 pi) / 24 - pi / 12. Für den längsten Umfang der Länge 12 muss beispielsweise a der kleinste Winkel pi / 12 sein, und dann werden unter Verwendung der Sinusformel die beiden anderen Seiten 12 / (sin (pi / 12)) = b / (sin ((2pi) /). 3)) = c / (sin (pi / 4)) Daher ist b = (12sin ((2pi) / 3)) / (sin (pi / 12)) = (12xx0.866) / 0,2588 = 40,155 und c = ( 12xxsin (pi / 4)) / (sin (pi / 12)) = (12xx0.7071) / 0,2588 = 32,786 Der längste
Zwei Ecken eines Dreiecks haben Winkel von (2 pi) / 3 und (pi) / 4. Wenn eine Seite des Dreiecks eine Länge von 4 hat, was ist der längste mögliche Umfang des Dreiecks?
P_max = 28.31 Einheiten Das Problem gibt zwei von drei Winkeln in einem beliebigen Dreieck an. Da sich die Summe der Winkel in einem Dreieck auf 180 Grad oder Pi-Radiant summieren muss, können wir den dritten Winkel finden: (2pi) / 3 + pi / 4 + x = pi x = pi (2pi) / 3- pi / 4 x = (12pi) / 12- (8pi) / 12- (3pi) / 12 x = pi / 12 Lassen Sie uns das Dreieck zeichnen: Das Problem besagt, dass eine der Seiten des Dreiecks eine Länge von 4 hat, aber welche Seite ist nicht angegeben. Es ist jedoch wahr, dass in jedem gegebenen Dreieck die kleinste Seite dem kleinsten Winkel entgegengesetzt ist. Wenn Sie den Umfang maximi
Zwei Ecken eines Dreiecks haben Winkel von (2 pi) / 3 und (pi) / 4. Wenn eine Seite des Dreiecks eine Länge von 19 hat, was ist der längste mögliche Umfang des Dreiecks?
Größtmögliche Umfangsfarbe (grün) (P = 19 + 51.909 + 63.5752 = 134.4842) Drei Winkel sind (2pi) / 3, pi / 4, pi / 12, da sich die drei Winkel zu pi ^ c addieren. Um den längsten Umfang zu erhalten, Seite 19 sollte dem kleinsten Winkel pi / 12 entsprechen 19 / sin (pi / 12) = b / sin (pi / 4) = c / sin ((2pi) / 3) b = (19 * sin (pi / 4) ) / sin (pi / 12) = 51.909 c = (19 * sin ((2pi) / 3)) / sin (pi / 12) = 63.5752 Längste Umfangsfarbe (grün) (P = 19 + 51.909 + 63.5752 = 134.4842) )