Antworten:
Die Länge muss 20 Zoll betragen.
Erläuterung:
Beginnen Sie mit L = W + 10 für einen algebraischen Ausdruck für Länge.
Der Umfang ist 2L + 2W in einem Rechteck. Schreiben Sie also 2 (W + 10) + 2W = 60.
Löse jetzt:
Die Länge eines Rechtecks beträgt 3,5 Zoll mehr als seine Breite. Der Umfang des Rechtecks beträgt 31 Zoll. Wie finden Sie die Länge und Breite des Rechtecks?
Länge = 9,5 ", Breite = 6" Beginnen Sie mit der Umfangsgleichung: P = 2l + 2w. Dann geben Sie an, welche Informationen wir kennen. Der Umfang beträgt 31 "und die Länge entspricht der Breite + 3,5". Dazu gilt: 31 = 2 (w + 3,5) + 2w, weil l = w + 3,5. Dann lösen wir nach w, indem wir alles durch 2 teilen. Wir bleiben dann bei 15.5 = w + 3.5 + w. Dann subtrahieren Sie 3,5 und kombinieren Sie die w, um zu erhalten: 12 = 2w. Schließlich dividiere noch mal durch 2, um w zu finden, und wir erhalten 6 = w. Dies sagt uns, dass die Breite 6 Zoll beträgt, die Hälfte des Problems.
Die Länge eines Rechtecks beträgt das Dreifache seiner Breite. Wenn die Länge um 2 Zoll und die Breite um 1 Zoll vergrößert würde, würde der neue Umfang 62 Zoll betragen. Was ist die Breite und Länge des Rechtecks?
Länge ist 21 und Breite ist 7. Ich benutze l für Länge und w für Breite. Zuerst wird angegeben, dass l = 3w gilt. Neue Länge und Breite ist l + 2 bzw. w + 1. Neuer Umfang ist 62. Also, l + 2 + l + 2 + w + 1 + w + 1 = 62 oder, 2l + 2w = 56 l + w = 28 Nun haben wir zwei Beziehungen zwischen l und w. Ersetzen Sie den ersten Wert von l in der zweiten Gleichung. Wir erhalten 3w + w = 28 4w = 28 w = 7 Setzen Sie diesen Wert von w in eine der Gleichungen: l = 3 * 7 l = 21 Also Länge ist 21 und Breite ist 7
Die Länge eines Rechtecks beträgt 4 Zoll mehr als seine Breite und sein Umfang beträgt 34 Zoll. Was ist die Länge und Breite des Rechtecks?
Länge l = 10,5 ", Breite w = 6,5" Umfang P = 2l + 2w Gegeben l = (w + 4) ", P = 34":. 34 = 2 (w + 4) + 2w 4w + 8 = 34 w = 26/4 = 6,5 "l = w + 4 = 6,5 + 4 = 10,5"