Antworten:
Die Geschwindigkeit des Stroms ist
Erläuterung:
Der Radius des Rades ist
Die Rotation ist
Die Winkelgeschwindigkeit beträgt
Die Geschwindigkeit des Stroms ist
Wasser tritt mit einer Geschwindigkeit von 10.000 cm3 / min aus einem umgekehrten konischen Tank aus, während Wasser mit einer konstanten Rate in den Tank gepumpt wird, wenn der Tank eine Höhe von 6 m hat und der Durchmesser an der Spitze 4 m beträgt Wenn der Wasserstand bei einer Höhe von 2 m um 20 cm / min ansteigt, wie finden Sie die Geschwindigkeit, mit der das Wasser in den Tank gepumpt wird?
Sei V das Volumen des Wassers in dem Tank in cm 3; h sei die Tiefe / Höhe des Wassers in cm; und sei r der Radius der Wasseroberfläche (oben) in cm. Da der Tank ein umgekehrter Kegel ist, ist dies auch die Wassermasse. Da der Tank eine Höhe von 6 m und einen Radius am oberen Rand von 2 m hat, implizieren ähnliche Dreiecke, dass frac {h} {r} = frac {6} {2} = 3 ist, so dass h = 3r ist. Das Volumen des umgekehrten Wasserkegels ist dann V = frac {1} {3} pi r ^ {2} h = pi r ^ {3}. Unterscheiden Sie nun beide Seiten bezüglich der Zeit t (in Minuten), um frac {dV} {dt} = 3 pi r ^ {2} cdot frac {dr} {dt} z
Kreis A hat einen Radius von 2 und einen Mittelpunkt von (6, 5). Kreis B hat einen Radius von 3 und einen Mittelpunkt von (2, 4). Wenn der Kreis B mit <1, 1> übersetzt wird, überlappt er den Kreis A? Wenn nicht, wie groß ist der Mindestabstand zwischen den Punkten in beiden Kreisen?
"Kreise überlappen"> "wir müssen hier den Abstand (d)" "zwischen den Zentren mit der Summe der Radien vergleichen." • "Wenn die Summe der Radien"> d "dann überlappen sich die Kreise" • ", wenn die Summe aus Radien "<d", dann keine Überlappung "" vor der Berechnung von d. Wir müssen das neue Zentrum "" von B nach der gegebenen Übersetzung "" unter der Übersetzung "<1,1> (2,4) in (2 + 1) finden. 4 + 1) bis (3,5) larrcolor (rot) "neues Zentrum von B" "um d zu bere
Eine feste Scheibe, die sich gegen den Uhrzeigersinn dreht, hat eine Masse von 7 kg und einen Radius von 3 m. Wenn sich ein Punkt am Rand der Platte mit 16 m / s in der Richtung senkrecht zum Radius der Platte bewegt, wie groß sind dann der Drehimpuls und die Geschwindigkeit der Platte?
Für eine Scheibe, die mit ihrer Achse durch das Zentrum und senkrecht zu ihrer Ebene rotiert, ist das Trägheitsmoment I = 1 / 2MR ^ 2. In diesem Fall ist das Trägheitsmoment I = 1 / 2MR ^ 2 = 1/2 xx (7 kg) xx (3 m) ^ 2 = 31,5 kgm ^ 2 wobei M die Gesamtmasse der Scheibe und R der Radius ist. Die Winkelgeschwindigkeit (omega) der Scheibe wird als gegeben: omega = v / r wobei v die lineare Geschwindigkeit in einem gewissen Abstand r von der Mitte ist. Also ist die Winkelgeschwindigkeit (omega) in unserem Fall = v / r = (16ms ^ -1) / (3m) ~ 5.33 rad "/" s. Daher ist das Angular Momentum = I omega ~ 31.