Antworten:
Das Zentrum ist
Die Äq.
Erläuterung:
Lass die gegebenen Punkte. Sein
Da dies die Extremitäten eines Durchmessers sind, liegt der Mittelpunkt.
Daher ist das Zentrum
Zum Schluss noch die Gl. des Kreises mit Zentrum
Der Radius eines Kreises beträgt 13 Zoll und die Länge eines Akkords im Kreis beträgt 10 Zoll. Wie finden Sie die Entfernung vom Mittelpunkt des Kreises zum Akkord?
Ich habe 12 "in" Betrachten Sie das Diagramm: Wir können das Pythagoras-Theorem verwenden, um das Dreieck der Seiten h, 13 und 10/2 = 5 Zoll zu erhalten: 13 ^ 2 = h ^ 2 + 5 ^ 2 umordnung: h = sqrt ( 13 ^ 2-5 ^ 2) = 12 "in"
Der Radius des größeren Kreises ist doppelt so lang wie der Radius des kleineren Kreises. Die Fläche des Donuts beträgt 75 Pi. Finden Sie den Radius des kleineren (inneren) Kreises.
Der kleinere Radius ist 5. Sei r = der Radius des inneren Kreises. Dann ist der Radius des größeren Kreises 2r. Aus der Referenz erhalten wir die Gleichung für die Fläche eines Annulus: A = pi (R ^ 2-r ^ 2) Ersetzen Sie 2r durch R: A = pi ((2r) ^ 2-r ^ 2) Vereinfachen Sie: A = pi ((4r ^ 2- r ^ 2) A = 3pir ^ 2 Ersetzen Sie im angegebenen Bereich: 75pi = 3pir ^ 2 Teilen Sie beide Seiten durch 3pi: 25 = r ^ 2 r = 5
Punkte (–9, 2) und (–5, 6) sind Endpunkte des Kreisdurchmessers. Wie lang ist der Durchmesser? Was ist der Mittelpunkt C des Kreises? Geben Sie für den Punkt C, den Sie in Teil (b) gefunden haben, den Punkt an, der symmetrisch zu C um die x-Achse ist
D = sqrt (32) = 4sqrt (2) ~ 5,66 center, C = (-7, 4) symmetrischer Punkt um die x-Achse: (-7, -4) Gegeben: Endpunkte des Durchmessers eines Kreises: (- 9, 2), (-5, 6) Verwenden Sie die Abstandsformel, um die Länge des Durchmessers zu ermitteln: d = sqrt ((y_2 - y_1) ^ 2 + (x_2 - x_1) ^ 2) d = sqrt ((- 9 - -5) ^ 2 + (2 - 6) ^ 2) = sqrt (16 + 16) = sqrt (32) = sqrt (16) sqrt (2) = 4 sqrt (2) ~~ 5.66 Verwenden Sie die Mittelwertformel zu Finde das Zentrum: ((x_1 + x_2) / 2, (y_1 + y_1) / 2): C = ((-9 + -5) / 2, (2 + 6) / 2) = (-14/2, 8/2) = (-7, 4) Verwenden Sie die Koordinatenregel für die Reflexion um die x-Achse